mirror of
https://github.com/c-cube/iter.git
synced 2025-12-06 03:05:29 -05:00
more lightweight representation of sequences (no record, just a function)
This commit is contained in:
parent
c4b7885e2a
commit
ab74acf87a
1 changed files with 23 additions and 37 deletions
60
sequence.ml
60
sequence.ml
|
|
@ -26,21 +26,15 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|||
(** {2 Transient iterators, that abstract on a finite sequence of elements. *)
|
||||
|
||||
(** Sequence abstract iterator type *)
|
||||
type 'a t = {
|
||||
seq_fun: ('a -> unit) -> unit;
|
||||
}
|
||||
type 'a t = ('a -> unit) -> unit
|
||||
|
||||
(** Build a sequence from a iter function *)
|
||||
let from_iter f = {
|
||||
seq_fun = f;
|
||||
}
|
||||
let from_iter f = f
|
||||
|
||||
let singleton x = {
|
||||
seq_fun = fun k -> k x;
|
||||
}
|
||||
let singleton x = fun k -> k x
|
||||
|
||||
(** Consume the sequence, passing all its arguments to the function *)
|
||||
let iter f seq = seq.seq_fun f
|
||||
let iter f seq = seq f
|
||||
|
||||
(** Iterate on elements and their index in the sequence *)
|
||||
let iteri f seq =
|
||||
|
|
@ -48,57 +42,54 @@ let iteri f seq =
|
|||
let k x =
|
||||
f !r x;
|
||||
incr r
|
||||
in seq.seq_fun k
|
||||
in seq k
|
||||
|
||||
(** Fold over elements of the sequence, consuming it *)
|
||||
let fold f init seq =
|
||||
let r = ref init in
|
||||
seq.seq_fun (fun elt -> r := f !r elt);
|
||||
seq (fun elt -> r := f !r elt);
|
||||
!r
|
||||
|
||||
(** Map objects of the sequence into other elements, lazily *)
|
||||
let map f seq =
|
||||
let seq_fun' k = seq.seq_fun (fun x -> k (f x)) in
|
||||
{ seq_fun=seq_fun'; }
|
||||
let seq_fun' k = seq (fun x -> k (f x)) in
|
||||
seq_fun'
|
||||
|
||||
(** Filter on elements of the sequence *)
|
||||
let filter p seq =
|
||||
let seq_fun' k = seq.seq_fun (fun x -> if p x then k x) in
|
||||
{ seq_fun=seq_fun'; }
|
||||
let seq_fun' k = seq (fun x -> if p x then k x) in
|
||||
seq_fun'
|
||||
|
||||
(** Append two sequences *)
|
||||
let append s1 s2 =
|
||||
let seq_fun k = s1.seq_fun k; s2.seq_fun k in
|
||||
{ seq_fun; }
|
||||
let seq_fun k = s1 k; s2 k in
|
||||
seq_fun
|
||||
|
||||
(** Concatenate a sequence of sequences into one sequence *)
|
||||
let concat s =
|
||||
let seq_fun k =
|
||||
fun k ->
|
||||
(* function that is called on every sub-sequence *)
|
||||
let k_seq seq = iter k seq in
|
||||
s.seq_fun k_seq
|
||||
in { seq_fun; }
|
||||
s k_seq
|
||||
|
||||
(** Take at most [n] elements from the sequence *)
|
||||
let take n seq =
|
||||
let count = ref 0 in
|
||||
let seq_fun k =
|
||||
fun k ->
|
||||
try
|
||||
seq.seq_fun
|
||||
seq
|
||||
(fun x -> if !count < n then begin incr count; k x end else raise Exit)
|
||||
with Exit -> ()
|
||||
in { seq_fun; }
|
||||
|
||||
(** Drop the [n] first elements of the sequence *)
|
||||
let drop n seq =
|
||||
let count = ref 0 in
|
||||
let seq_fun k = seq.seq_fun
|
||||
fun k -> seq
|
||||
(fun x -> if !count >= n then k x else incr count)
|
||||
in { seq_fun; }
|
||||
|
||||
(** Reverse the sequence. O(n) memory. *)
|
||||
let rev seq =
|
||||
let seq_fun k =
|
||||
fun k ->
|
||||
(* if we have traversed [s_1, ..., s_m], [cont ()] will call [k] on s_m,
|
||||
s_{m-1}, ..., s_1. Once we know [s_{m+1}], we update [cont] so that it
|
||||
first returns it, and then called the previous cont. *)
|
||||
|
|
@ -108,19 +99,18 @@ let rev seq =
|
|||
let cont' () = k x; current_cont () in
|
||||
cont := cont') seq;
|
||||
!cont ()
|
||||
in { seq_fun; }
|
||||
|
||||
(** Do all elements satisfy the predicate? *)
|
||||
let for_all p seq =
|
||||
try
|
||||
seq.seq_fun (fun x -> if not (p x) then raise Exit);
|
||||
seq (fun x -> if not (p x) then raise Exit);
|
||||
true
|
||||
with Exit -> false
|
||||
|
||||
(** Exists there some element satisfying the predicate? *)
|
||||
let exists p seq =
|
||||
try
|
||||
seq.seq_fun (fun x -> if p x then raise Exit);
|
||||
seq (fun x -> if p x then raise Exit);
|
||||
false
|
||||
with Exit -> true
|
||||
|
||||
|
|
@ -152,11 +142,10 @@ module Array =
|
|||
|
||||
let slice a i j =
|
||||
assert (i >= 0 && j < Array.length a);
|
||||
let seq_fun k =
|
||||
fun k ->
|
||||
for idx = i to j do
|
||||
k a.(idx); (* iterate on sub-array *)
|
||||
done
|
||||
in { seq_fun; }
|
||||
end
|
||||
|
||||
module Stack =
|
||||
|
|
@ -208,13 +197,10 @@ module String =
|
|||
module Int =
|
||||
struct
|
||||
let range ~start ~stop =
|
||||
let seq_fun k =
|
||||
fun k ->
|
||||
for i = start to stop do k i done
|
||||
in { seq_fun; }
|
||||
|
||||
let repeat i =
|
||||
let seq_fun k = while true do k i; done in
|
||||
{ seq_fun; }
|
||||
let repeat i = fun k -> while true do k i; done
|
||||
end
|
||||
|
||||
(** Iterate on sets. The functor must be instantiated with a set type *)
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue