mirror of
https://github.com/c-cube/iter.git
synced 2025-12-06 11:15:32 -05:00
added Sequence.persistent function (copy sequence in memory);
implementation is done by unrolled linked list (also used for Sequence.rev and Sequence.to_array); should be quite efficient in time and memory
This commit is contained in:
parent
d64691f1b3
commit
df7ef45ad5
2 changed files with 108 additions and 24 deletions
123
sequence.ml
123
sequence.ml
|
|
@ -23,7 +23,7 @@ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*)
|
||||
|
||||
(** {2 Transient iterators, that abstract on a finite sequence of elements. *)
|
||||
(** {1 Transient iterators, that abstract on a finite sequence of elements. *)
|
||||
|
||||
(** Sequence abstract iterator type *)
|
||||
type 'a t = ('a -> unit) -> unit
|
||||
|
|
@ -117,8 +117,96 @@ let intersperse seq elem =
|
|||
from_iter
|
||||
(fun k -> seq (fun x -> k x; k elem))
|
||||
|
||||
(** Mutable unrolled list to serve as intermediate storage *)
|
||||
module MList = struct
|
||||
type 'a t = {
|
||||
content : 'a array; (* elements of the node *)
|
||||
mutable len : int; (* number of elements in content *)
|
||||
mutable tl : 'a t; (* tail *)
|
||||
} (** A list that contains some elements, and may point to another list *)
|
||||
|
||||
let _empty () : 'a t = Obj.magic 0
|
||||
(** Empty list, for the tl field *)
|
||||
|
||||
let make n =
|
||||
assert (n > 0);
|
||||
{ content = Array.make n (Obj.magic 0);
|
||||
len = 0;
|
||||
tl = _empty ();
|
||||
}
|
||||
|
||||
let rec is_empty l =
|
||||
l.len = 0 && (l.tl == _empty () || is_empty l.tl)
|
||||
|
||||
let rec iter f l =
|
||||
for i = 0 to l.len - 1 do f l.content.(i); done;
|
||||
if l.tl != _empty () then iter f l.tl
|
||||
|
||||
let iteri f l =
|
||||
let rec iteri i f l =
|
||||
for j = 0 to l.len - 1 do f (i+j) l.content.(j); done;
|
||||
if l.tl != _empty () then iteri (i+l.len) f l.tl
|
||||
in iteri 0 f l
|
||||
|
||||
let length l =
|
||||
let rec len acc l =
|
||||
if l.tl == _empty () then acc+l.len else len (acc+l.len) l.tl
|
||||
in len 0 l
|
||||
|
||||
(** Get element by index *)
|
||||
let rec get l i =
|
||||
if i < l.len then l.content.(i)
|
||||
else if i >= l.len && l.tl == _empty () then raise (Invalid_argument "MList.get")
|
||||
else get l.tl (i - l.len)
|
||||
|
||||
(** Push [x] at the end of the list. It returns the block in which the
|
||||
element is inserted. *)
|
||||
let rec push x l =
|
||||
if l.len = Array.length l.content
|
||||
then begin (* insert in the next block *)
|
||||
(if l.tl == _empty () then l.tl <- make (Array.length l.content));
|
||||
push x l.tl
|
||||
end else begin (* insert in l *)
|
||||
l.content.(l.len) <- x;
|
||||
l.len <- l.len + 1;
|
||||
l
|
||||
end
|
||||
|
||||
(** Reverse list (in place), and returns the new head *)
|
||||
let rev l =
|
||||
let rec rev prev l =
|
||||
(* reverse array *)
|
||||
for i = 0 to (l.len-1) / 2 do
|
||||
let x = l.content.(i) in
|
||||
l.content.(i) <- l.content.(l.len - i - 1);
|
||||
l.content.(l.len - i - 1) <- x;
|
||||
done;
|
||||
(* reverse next block *)
|
||||
let l' = l.tl in
|
||||
l.tl <- prev;
|
||||
if l' == _empty () then l else rev l l'
|
||||
in
|
||||
rev (_empty ()) l
|
||||
|
||||
(** Build a MList of elements of the Seq. The optional argument indicates
|
||||
the size of the blocks *)
|
||||
let of_seq ?(size=64) seq =
|
||||
(* read sequence into a MList.t *)
|
||||
let start = make size in
|
||||
let l = ref start in
|
||||
seq (fun x -> l := push x !l);
|
||||
start
|
||||
end
|
||||
|
||||
(** Iterate on the sequence, storing elements in a data structure.
|
||||
The resulting sequence can be iterated on as many times as needed. *)
|
||||
let persistent (seq : 'a t) : 'a t =
|
||||
let l = MList.of_seq seq in
|
||||
from_iter (fun k -> MList.iter k l)
|
||||
|
||||
(** Cartesian product of the sequences. *)
|
||||
let product outer inner =
|
||||
let outer = persistent outer in
|
||||
from_iter
|
||||
(fun k ->
|
||||
outer (fun x ->
|
||||
|
|
@ -163,16 +251,9 @@ let drop n seq =
|
|||
|
||||
(** Reverse the sequence. O(n) memory. *)
|
||||
let rev seq =
|
||||
fun k ->
|
||||
(* if we have traversed [s_1, ..., s_m], [cont ()] will call [k] on s_m,
|
||||
s_{m-1}, ..., s_1. Once we know [s_{m+1}], we update [cont] so that it
|
||||
first returns it, and then called the previous cont. *)
|
||||
let cont = ref (fun () -> ()) in
|
||||
iter (fun x ->
|
||||
let current_cont = !cont in
|
||||
let cont' () = k x; current_cont () in
|
||||
cont := cont') seq;
|
||||
!cont ()
|
||||
let l = MList.of_seq seq in
|
||||
let l' = MList.rev l in
|
||||
from_iter (fun k -> MList.iter k l')
|
||||
|
||||
(** Do all elements satisfy the predicate? *)
|
||||
let for_all p seq =
|
||||
|
|
@ -207,17 +288,15 @@ let to_rev_list seq = fold (fun y x -> x :: y) [] seq
|
|||
let of_list l = from_iter (fun k -> List.iter k l)
|
||||
|
||||
let to_array seq =
|
||||
(* intermediate list... *)
|
||||
let l = to_rev_list seq in
|
||||
let a = Array.of_list l in
|
||||
(* reverse array *)
|
||||
let n = Array.length a in
|
||||
for i = 0 to (n-1) / 2 do
|
||||
let tmp = a.(i) in
|
||||
a.(i) <- a.(n-i-1);
|
||||
a.(n-i-1) <- tmp;
|
||||
done;
|
||||
a
|
||||
let l = MList.of_seq seq in
|
||||
let n = MList.length l in
|
||||
if n = 0
|
||||
then [||]
|
||||
else begin
|
||||
let a = Array.make n (MList.get l 0) in
|
||||
MList.iteri (fun i x -> a.(i) <- x) l;
|
||||
a
|
||||
end
|
||||
|
||||
let of_array a = from_iter (fun k -> Array.iter k a)
|
||||
|
||||
|
|
|
|||
|
|
@ -105,9 +105,14 @@ val flatMap : ('a -> 'b t) -> 'a t -> 'b t
|
|||
val intersperse : 'a t -> 'a -> 'a t
|
||||
(** Insert the second element between every element of the sequence *)
|
||||
|
||||
val persistent : 'a t -> 'a t
|
||||
(** Iterate on the sequence, storing elements in a data structure.
|
||||
The resulting sequence can be iterated on as many times as needed. *)
|
||||
|
||||
val product : 'a t -> 'b t -> ('a * 'b) t
|
||||
(** Cartesian product of the sequences. The first one is outer
|
||||
and therefore must be traversable several times. *)
|
||||
(** Cartesian product of the sequences. The first one is transformed
|
||||
by calling [persistent] on it, so that it can be traversed
|
||||
several times (outer loop of the product) *)
|
||||
|
||||
val unfoldr : ('b -> ('a * 'b) option) -> 'b -> 'a t
|
||||
(** [unfoldr f b] will apply [f] to [b]. If it
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue