(* Copyright (c) 2013, Simon Cruanes All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *) (** {1 Transient iterators, that abstract on a finite sequence of elements.} *) (** Sequence abstract iterator type *) type 'a t = ('a -> unit) -> unit type 'a sequence = 'a t type (+'a, +'b) t2 = ('a -> 'b -> unit) -> unit (** Sequence of pairs of values of type ['a] and ['b]. *) (** Build a sequence from a iter function *) let from_iter f = f let rec from_fun f k = match f () with | None -> () | Some x -> k x; from_fun f k let empty _ = () let singleton x k = k x let return x k = k x let pure f k = k f let doubleton x y k = k x; k y let cons x l k = k x; l k let snoc l x k = l k; k x let repeat x k = while true do k x done let rec iterate f x k = k x; iterate f (f x) k let rec forever f k = k (f ()); forever f k let cycle s k = while true do s k; done let iter ~(f:'a -> unit) seq = seq f let iteri ~f seq = let r = ref 0 in seq (fun x -> f !r x; incr r) let fold ~f ~init seq = let r = ref init in seq (fun elt -> r := f !r elt); !r let foldi ~f ~init seq = let i = ref 0 in let r = ref init in seq (fun elt -> r := f !r !i elt; incr i); !r let map ~f seq k = seq (fun x -> k (f x)) let mapi ~f seq k = let i = ref 0 in seq (fun x -> k (f !i x); incr i) let filter ~f seq k = seq (fun x -> if f x then k x) let append s1 s2 k = s1 k; s2 k let concat s k = s (fun s' -> s' k) let flatten s = concat s let flatMap ~f seq k = seq (fun x -> f x k) let flat_map = flatMap let fmap ~f seq k = seq (fun x -> match f x with | None -> () | Some y -> k y ) let filter_map = fmap let intersperse ~x seq k = let first = ref true in seq (fun y -> (if !first then first := false else k x); k y) (** Mutable unrolled list to serve as intermediate storage *) module MList = struct type 'a node = | Nil | Cons of 'a array * int ref * 'a node ref (* build and call callback on every element *) let of_seq_with seq k = let start = ref Nil in let chunk_size = ref 8 in (* fill the list. prev: tail-reference from previous node *) let prev, cur = ref start, ref Nil in seq (fun x -> k x; (* callback *) match !cur with | Nil -> let n = !chunk_size in if n < 4096 then chunk_size := 2 * !chunk_size; cur := Cons (Array.make n x, ref 1, ref Nil) | Cons (a,n,next) -> assert (!n < Array.length a); a.(!n) <- x; incr n; if !n = Array.length a then begin !prev := !cur; prev := next; cur := Nil end ); !prev := !cur; !start let of_seq seq = of_seq_with seq (fun _ -> ()) let rec iter f l = match l with | Nil -> () | Cons (a, n, tl) -> for i=0 to !n - 1 do f a.(i) done; iter f !tl let iteri f l = let rec iteri i f l = match l with | Nil -> () | Cons (a, n, tl) -> for j=0 to !n - 1 do f (i+j) a.(j) done; iteri (i+ !n) f !tl in iteri 0 f l let rec iter_rev f l = match l with | Nil -> () | Cons (a, n, tl) -> iter_rev f !tl; for i = !n-1 downto 0 do f a.(i) done let length l = let rec len acc l = match l with | Nil -> acc | Cons (_, n, tl) -> len (acc+ !n) !tl in len 0 l (** Get element by index *) let rec get l i = match l with | Nil -> raise (Invalid_argument "MList.get") | Cons (a, n, _) when i < !n -> a.(i) | Cons (_, n, tl) -> get !tl (i- !n) let to_seq l k = iter k l let _to_next arg l = let cur = ref l in let i = ref 0 in (* offset in cons *) let rec get_next _ = match !cur with | Nil -> None | Cons (_, n, tl) when !i = !n -> cur := !tl; i := 0; get_next arg | Cons (a, _, _) -> let x = a.(!i) in incr i; Some x in get_next let to_gen l = _to_next () l let to_stream l = Stream.from (_to_next 42 l) (* 42=magic cookiiiiiie *) let to_klist l = let rec make (l,i) () = match l with | Nil -> `Nil | Cons (_, n, tl) when i = !n -> make (!tl,0) () | Cons (a, _, _) -> `Cons (a.(i), make (l,i+1)) in make (l,0) end let persistent seq = let l = MList.of_seq seq in MList.to_seq l type 'a lazy_state = | LazySuspend | LazyCached of 'a t let persistent_lazy (seq:'a t) = let r = ref LazySuspend in fun k -> match !r with | LazyCached seq' -> seq' k | LazySuspend -> (* here if this traversal is interruted, no caching occurs *) let seq' = MList.of_seq_with seq k in r := LazyCached (MList.to_seq seq') let sort ?(cmp=Pervasives.compare) seq = (* use an intermediate list, then sort the list *) let l = fold ~f:(fun l x -> x::l) ~init:[] seq in let l = List.fast_sort cmp l in fun k -> List.iter k l let group ?(eq=fun x y -> x = y) seq k = let cur = ref [] in seq (fun x -> match !cur with | [] -> cur := [x] | (y::_) as l when eq x y -> cur := x::l (* [x] belongs to the group *) | (_::_) as l -> k l; (* yield group, and start another one *) cur := [x]); (* last list *) if !cur <> [] then k !cur let uniq ?(eq=fun x y -> x = y) seq k = let has_prev = ref false and prev = ref (Obj.magic 0) in (* avoid option type, costly *) seq (fun x -> if !has_prev && eq !prev x then () (* duplicate *) else begin has_prev := true; prev := x; k x end) let sort_uniq (type elt) ?(cmp=Pervasives.compare) seq = let module S = Set.Make(struct type t = elt let compare = cmp end) in let set = fold ~f:(fun acc x -> S.add x acc) ~init:S.empty seq in fun k -> S.iter k set let product outer inner k = outer (fun x -> inner (fun y -> k (x,y)) ) let product2 outer inner k = outer (fun x -> inner (fun y -> k x y) ) let join ~join_row s1 s2 k = s1 (fun a -> s2 (fun b -> match join_row a b with | None -> () | Some c -> k c ) ) (* yield the combination of [a] and [b] *) let rec unfoldr f b k = match f b with | None -> () | Some (x, b') -> k x; unfoldr f b' k let scan f acc seq k = k acc; let acc = ref acc in seq (fun elt -> let acc' = f !acc elt in k acc'; acc := acc') let max ?(lt=fun x y -> x < y) seq = let ret = ref None in seq (fun x -> match !ret with | None -> ret := Some x | Some y -> if lt y x then ret := Some x); !ret let min ?(lt=fun x y -> x < y) seq = let ret = ref None in seq (fun x -> match !ret with | None -> ret := Some x | Some y -> if lt x y then ret := Some x); !ret exception ExitHead let head seq = let r = ref None in try seq (fun x -> r := Some x; raise ExitHead); None with ExitHead -> !r let head_exn seq = match head seq with | None -> invalid_arg "Sequence.head_exn" | Some x -> x exception ExitTake let take n seq k = let count = ref 0 in try seq (fun x -> if !count = n then raise ExitTake; incr count; k x; ) with ExitTake -> () exception ExitTakeWhile let take_while ~f seq k = try seq (fun x -> if f x then k x else raise ExitTakeWhile) with ExitTakeWhile -> () exception ExitFoldWhile let fold_while ~f ~init seq = let state = ref init in let consume x = let acc, cont = f (!state) x in state := acc; match cont with | `Stop -> raise ExitFoldWhile | `Continue -> () in try seq consume; !state with ExitFoldWhile -> !state let drop n seq k = let count = ref 0 in seq (fun x -> if !count >= n then k x else incr count) let drop_while ~f seq k = let drop = ref true in seq (fun x -> if !drop then if f x then () else (drop := false; k x) else k x) let rev seq = let l = MList.of_seq seq in fun k -> MList.iter_rev k l exception ExitForall let for_all ~f seq = try seq (fun x -> if not (f x) then raise ExitForall); true with ExitForall -> false exception ExitExists (** Exists there some element satisfying the predicate? *) let exists ~f seq = try seq (fun x -> if f x then raise ExitExists); false with ExitExists -> true let mem ?(eq=(=)) ~x seq = exists ~f:(eq x) seq exception ExitFind let find ~f seq = let r = ref None in begin try seq (fun x -> match f x with | None -> () | Some _ as res -> r := res; raise ExitFind ); with ExitFind -> () end; !r let length seq = let r = ref 0 in seq (fun _ -> incr r); !r exception ExitIsEmpty let is_empty seq = try seq (fun _ -> raise ExitIsEmpty); true with ExitIsEmpty -> false (** {2 Transform a sequence} *) let empty2 _ = () let is_empty2 seq2 = try ignore (seq2 (fun _ _ -> raise ExitIsEmpty)); true with ExitIsEmpty -> false let length2 seq2 = let r = ref 0 in seq2 (fun _ _ -> incr r); !r let zip seq2 k = seq2 (fun x y -> k (x,y)) let unzip seq k = seq (fun (x,y) -> k x y) let zip_i seq k = let r = ref 0 in seq (fun x -> let n = !r in incr r; k n x) let fold2 ~f ~init seq2 = let acc = ref init in seq2 (fun x y -> acc := f !acc x y); !acc let iter2 ~f seq2 = seq2 f let map2 ~f seq2 k = seq2 (fun x y -> k (f x y)) let map2_2 f g seq2 k = seq2 (fun x y -> k (f x y) (g x y)) (** {2 Basic data structures converters} *) let to_list seq = List.rev (fold ~f:(fun y x -> x::y) ~init:[] seq) let to_rev_list seq = fold ~f:(fun y x -> x :: y) ~init:[] seq let of_list l k = List.iter k l let on_list f l = to_list (f (of_list l)) let to_opt = head let of_opt o k = match o with | None -> () | Some x -> k x let to_array seq = let l = MList.of_seq seq in let n = MList.length l in if n = 0 then [||] else begin let a = Array.make n (MList.get l 0) in MList.iteri (fun i x -> a.(i) <- x) l; a end let of_array a k = for i = 0 to Array.length a - 1 do k (Array.unsafe_get a i) done let of_array_i a k = for i = 0 to Array.length a - 1 do k (i, Array.unsafe_get a i) done let of_array2 a k = for i = 0 to Array.length a - 1 do k i (Array.unsafe_get a i) done let array_slice a i j k = assert (i >= 0 && j < Array.length a); for idx = i to j do k a.(idx); (* iterate on sub-array *) done let of_stream s k = Stream.iter k s let to_stream seq = let l = MList.of_seq seq in MList.to_stream l let to_stack s seq = iter ~f:(fun x -> Stack.push x s) seq let of_stack s k = Stack.iter k s let to_queue q seq = seq (fun x -> Queue.push x q) let of_queue q k = Queue.iter k q let hashtbl_add h seq = seq (fun (k,v) -> Hashtbl.add h k v) let hashtbl_replace h seq = seq (fun (k,v) -> Hashtbl.replace h k v) let to_hashtbl seq = let h = Hashtbl.create 3 in hashtbl_replace h seq; h let to_hashtbl2 seq2 = let h = Hashtbl.create 3 in seq2 (fun k v -> Hashtbl.replace h k v); h let of_hashtbl h k = Hashtbl.iter (fun a b -> k (a, b)) h let of_hashtbl2 h k = Hashtbl.iter k h let hashtbl_keys h k = Hashtbl.iter (fun a _ -> k a) h let hashtbl_values h k = Hashtbl.iter (fun _ b -> k b) h let of_str s k = String.iter k s let to_str seq = let b = Buffer.create 64 in iter ~f:(fun c -> Buffer.add_char b c) seq; Buffer.contents b let concat_str seq = let b = Buffer.create 64 in iter ~f:(Buffer.add_string b) seq; Buffer.contents b exception OneShotSequence let of_in_channel ic = let first = ref true in fun k -> if not !first then raise OneShotSequence else ( first := false; try while true do let c = input_char ic in k c done with End_of_file -> () ) let to_buffer seq buf = seq (fun c -> Buffer.add_char buf c) (** Iterator on integers in [start...stop] by steps 1 *) let int_range ~start ~stop k = for i = start to stop do k i done let int_range_dec ~start ~stop k = for i = start downto stop do k i done let of_set (type s) (type v) m set = let module S = (val m : Set.S with type t = s and type elt = v) in fun k -> S.iter k set let to_set (type s) (type v) m seq = let module S = (val m : Set.S with type t = s and type elt = v) in fold ~f:(fun set x -> S.add x set) ~init:S.empty seq type 'a gen = unit -> 'a option type 'a klist = unit -> [`Nil | `Cons of 'a * 'a klist] let of_gen g = (* consume the generator to build a MList *) let rec iter1 k = match g () with | None -> () | Some x -> k x; iter1 k in let l = MList.of_seq iter1 in MList.to_seq l let to_gen seq = let l = MList.of_seq seq in MList.to_gen l let rec of_klist l k = match l() with | `Nil -> () | `Cons (x,tl) -> k x; of_klist tl k let to_klist seq = let l = MList.of_seq seq in MList.to_klist l (** {2 Functorial conversions between sets and sequences} *) module Set = struct module type S = sig include Set.S val of_seq : elt sequence -> t val to_seq : t -> elt sequence val to_list : t -> elt list val of_list : elt list -> t end (** Create an enriched Set module from the given one *) module Adapt(X : Set.S) : S with type elt = X.elt and type t = X.t = struct let to_seq set k = X.iter k set let of_seq seq = fold ~f:(fun set x -> X.add x set) ~init:X.empty seq let to_list set = to_list (to_seq set) include X let of_list l = List.fold_left (fun set x -> add x set) empty l end (** Functor to build an extended Set module from an ordered type *) module Make(X : Set.OrderedType) = struct module MySet = Set.Make(X) include Adapt(MySet) end end (** {2 Conversion between maps and sequences.} *) module Map = struct module type S = sig include Map.S val to_seq : 'a t -> (key * 'a) sequence val of_seq : (key * 'a) sequence -> 'a t val keys : 'a t -> key sequence val values : 'a t -> 'a sequence val to_list : 'a t -> (key * 'a) list val of_list : (key * 'a) list -> 'a t end (** Adapt a pre-existing Map module to make it sequence-aware *) module Adapt(M : Map.S) = struct let to_seq m = from_iter (fun k -> M.iter (fun x y -> k (x,y)) m) let of_seq seq = fold ~f:(fun m (k,v) -> M.add k v m) ~init:M.empty seq let keys m = from_iter (fun k -> M.iter (fun x _ -> k x) m) let values m = from_iter (fun k -> M.iter (fun _ y -> k y) m) let of_list l = of_seq (of_list l) let to_list x = to_list (to_seq x) include M end (** Create an enriched Map module, with sequence-aware functions *) module Make(V : Map.OrderedType) : S with type key = V.t = struct module M = Map.Make(V) include Adapt(M) end end (** {2 Infinite sequences of random values} *) let random_int bound = forever (fun () -> Random.int bound) let random_bool = forever Random.bool let random_float bound = forever (fun () -> Random.float bound) let random_array a k = assert (Array.length a > 0); while true do let i = Random.int (Array.length a) in k a.(i); done let random_list l = random_array (Array.of_list l) (** {2 Infix functions} *) module Infix = struct let (--) i j = int_range ~start:i ~stop:j let (--^) i j = int_range_dec ~start:i ~stop:j let (>>=) x f = flat_map ~f x let (>|=) x f = map ~f x let (<*>) funs args k = funs (fun f -> args (fun x -> k (f x))) let (<+>) = append end include Infix (** {2 Pretty printing of sequences} *) (** Pretty print a sequence of ['a], using the given pretty printer to print each elements. An optional separator string can be provided. *) let pp_seq ?(sep=", ") pp_elt formatter seq = let first = ref true in seq (fun x -> (if !first then first := false else begin Format.pp_print_string formatter sep; Format.pp_print_cut formatter (); end); pp_elt formatter x) let pp_buf ?(sep=", ") pp_elt buf seq = let first = ref true in seq (fun x -> if !first then first := false else Buffer.add_string buf sep; pp_elt buf x) let to_string ?sep pp_elt seq = let buf = Buffer.create 25 in pp_buf ?sep (fun buf x -> Buffer.add_string buf (pp_elt x)) buf seq; Buffer.contents buf (** {2 Basic IO} *) module IO = struct let lines_of ?(mode=0o644) ?(flags=[Open_rdonly]) filename = fun k -> let ic = open_in_gen flags mode filename in try while true do let line = input_line ic in k line done with | End_of_file -> close_in ic | e -> close_in_noerr ic; raise e let chunks_of ?(mode=0o644) ?(flags=[]) ?(size=1024) filename = fun k -> let ic = open_in_gen flags mode filename in try let buf = Bytes.create size in let n = ref 0 in let stop = ref false in while not !stop do n := 0; (* try to read [size] chars. If [input] returns [0] it means the end of file, so we stop, but first we yield the current chunk *) while !n < size && not !stop do let n' = input ic buf !n (size - !n) in if n' = 0 then stop := true else n := !n + n'; done; if !n > 0 then k (Bytes.sub_string buf 0 !n) done; close_in ic with e -> close_in_noerr ic; raise e let write_bytes_to ?(mode=0o644) ?(flags=[Open_creat;Open_wronly]) filename seq = let oc = open_out_gen flags mode filename in try seq (fun s -> output oc s 0 (Bytes.length s)); close_out oc with e -> close_out oc; raise e let write_to ?mode ?flags filename seq = write_bytes_to ?mode ?flags filename (map ~f:Bytes.unsafe_of_string seq) let write_bytes_lines ?mode ?flags filename seq = let ret = Bytes.unsafe_of_string "\n" in write_bytes_to ?mode ?flags filename (snoc (intersperse ~x:ret seq) ret) let write_lines ?mode ?flags filename seq = write_bytes_lines ?mode ?flags filename (map ~f:Bytes.unsafe_of_string seq) end