iter/sequence.ml
2014-12-01 16:03:37 +01:00

787 lines
18 KiB
OCaml

(*
Copyright (c) 2013, Simon Cruanes
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with
the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*)
(** {1 Transient iterators, that abstract on a finite sequence of elements.} *)
(** Sequence abstract iterator type *)
type 'a t = ('a -> unit) -> unit
type 'a sequence = 'a t
type (+'a, +'b) t2 = ('a -> 'b -> unit) -> unit
(** Sequence of pairs of values of type ['a] and ['b]. *)
(** Build a sequence from a iter function *)
let from_iter f = f
let rec from_fun f k = match f () with
| None -> ()
| Some x -> k x; from_fun f k
let empty _ = ()
let singleton x k = k x
let return x k = k x
let pure f k = k f
let doubleton x y k = k x; k y
let cons x l k = k x; l k
let snoc l x k = l k; k x
let repeat x k = while true do k x done
let rec iterate f x k =
k x;
iterate f (f x) k
let rec forever f k =
k (f ());
forever f k
let cycle s k = while true do s k; done
let iter f seq = seq f
let iteri f seq =
let r = ref 0 in
seq
(fun x ->
f !r x;
incr r)
let fold f init seq =
let r = ref init in
seq (fun elt -> r := f !r elt);
!r
let foldi f init seq =
let i = ref 0 in
let r = ref init in
seq
(fun elt ->
r := f !r !i elt;
incr i);
!r
let map f seq k = seq (fun x -> k (f x))
let mapi f seq k =
let i = ref 0 in
seq (fun x -> k (f !i x); incr i)
let filter p seq k = seq (fun x -> if p x then k x)
let append s1 s2 k = s1 k; s2 k
let concat s k = s (fun s' -> s' k)
let flatten s = concat s
let flatMap f seq k = seq (fun x -> f x k)
let flat_map = flatMap
let fmap f seq k =
seq (fun x -> match f x with
| None -> ()
| Some y -> k y
)
let filter_map = fmap
let intersperse elem seq k =
let first = ref true in
seq (fun x -> (if !first then first := false else k elem); k x)
(** Mutable unrolled list to serve as intermediate storage *)
module MList = struct
type 'a node =
| Nil
| Cons of 'a array * int ref * 'a node ref
(* build and call callback on every element *)
let of_seq_with seq k =
let start = ref Nil in
let chunk_size = ref 8 in
(* fill the list. prev: tail-reference from previous node *)
let prev, cur = ref start, ref Nil in
seq
(fun x ->
k x; (* callback *)
match !cur with
| Nil ->
let n = !chunk_size in
if n < 4096 then chunk_size := 2 * !chunk_size;
cur := Cons (Array.make n x, ref 1, ref Nil)
| Cons (a,n,next) ->
assert (!n < Array.length a);
a.(!n) <- x;
incr n;
if !n = Array.length a then begin
!prev := !cur;
prev := next;
cur := Nil
end
);
!prev := !cur;
!start
let of_seq seq =
of_seq_with seq (fun _ -> ())
let rec iter f l = match l with
| Nil -> ()
| Cons (a, n, tl) ->
for i=0 to !n - 1 do f a.(i) done;
iter f !tl
let iteri f l =
let rec iteri i f l = match l with
| Nil -> ()
| Cons (a, n, tl) ->
for j=0 to !n - 1 do f (i+j) a.(j) done;
iteri (i+ !n) f !tl
in iteri 0 f l
let rec iter_rev f l = match l with
| Nil -> ()
| Cons (a, n, tl) ->
iter_rev f !tl;
for i = !n-1 downto 0 do f a.(i) done
let length l =
let rec len acc l = match l with
| Nil -> acc
| Cons (_, n, tl) -> len (acc+ !n) !tl
in len 0 l
(** Get element by index *)
let rec get l i = match l with
| Nil -> raise (Invalid_argument "MList.get")
| Cons (a, n, _) when i < !n -> a.(i)
| Cons (_, n, tl) -> get !tl (i- !n)
let to_seq l k = iter k l
let _to_next arg l =
let cur = ref l in
let i = ref 0 in (* offset in cons *)
let rec get_next _ = match !cur with
| Nil -> None
| Cons (_, n, tl) when !i = !n ->
cur := !tl;
i := 0;
get_next arg
| Cons (a, _, _) ->
let x = a.(!i) in
incr i;
Some x
in get_next
let to_gen l = _to_next () l
let to_stream l =
Stream.from (_to_next 42 l) (* 42=magic cookiiiiiie *)
let to_klist l =
let rec make (l,i) () = match l with
| Nil -> `Nil
| Cons (_, n, tl) when i = !n -> make (!tl,0) ()
| Cons (a, _, _) -> `Cons (a.(i), make (l,i+1))
in make (l,0)
end
let persistent seq =
let l = MList.of_seq seq in
MList.to_seq l
type 'a lazy_state =
| LazySuspend
| LazyCached of 'a t
let persistent_lazy (seq:'a t) =
let r = ref LazySuspend in
fun k ->
match !r with
| LazyCached seq' -> seq' k
| LazySuspend ->
(* here if this traversal is interruted, no caching occurs *)
let seq' = MList.of_seq_with seq k in
r := LazyCached (MList.to_seq seq')
let sort ?(cmp=Pervasives.compare) seq =
(* use an intermediate list, then sort the list *)
let l = fold (fun l x -> x::l) [] seq in
let l = List.fast_sort cmp l in
fun k -> List.iter k l
let group ?(eq=fun x y -> x = y) seq k =
let cur = ref [] in
seq (fun x ->
match !cur with
| [] -> cur := [x]
| (y::_) as l when eq x y ->
cur := x::l (* [x] belongs to the group *)
| (_::_) as l ->
k l; (* yield group, and start another one *)
cur := [x]);
(* last list *)
if !cur <> [] then k !cur
let uniq ?(eq=fun x y -> x = y) seq k =
let has_prev = ref false
and prev = ref (Obj.magic 0) in (* avoid option type, costly *)
seq (fun x ->
if !has_prev && eq !prev x
then () (* duplicate *)
else begin
has_prev := true;
prev := x;
k x
end)
let sort_uniq (type elt) ?(cmp=Pervasives.compare) seq =
let module S = Set.Make(struct
type t = elt
let compare = cmp
end) in
let set = fold (fun acc x -> S.add x acc) S.empty seq in
fun k -> S.iter k set
let product outer inner k =
outer (fun x ->
inner (fun y -> k (x,y))
)
let product2 outer inner k =
outer (fun x ->
inner (fun y -> k x y)
)
let join ~join_row s1 s2 k =
s1 (fun a ->
s2 (fun b ->
match join_row a b with
| None -> ()
| Some c -> k c
)
) (* yield the combination of [a] and [b] *)
let rec unfoldr f b k = match f b with
| None -> ()
| Some (x, b') ->
k x;
unfoldr f b' k
let scan f acc seq k =
k acc;
let acc = ref acc in
seq (fun elt -> let acc' = f !acc elt in k acc'; acc := acc')
let max ?(lt=fun x y -> x < y) seq =
let ret = ref None in
seq (fun x -> match !ret with
| None -> ret := Some x
| Some y -> if lt y x then ret := Some x);
!ret
let min ?(lt=fun x y -> x < y) seq =
let ret = ref None in
seq (fun x -> match !ret with
| None -> ret := Some x
| Some y -> if lt x y then ret := Some x);
!ret
exception ExitHead
let head seq =
let r = ref None in
try
seq (fun x -> r := Some x; raise ExitHead); None
with ExitHead -> !r
let head_exn seq =
match head seq with
| None -> invalid_arg "Sequence.head_exn"
| Some x -> x
exception ExitTake
let take n seq k =
let count = ref 0 in
try
seq (fun x ->
if !count = n then raise ExitTake;
incr count;
k x;
)
with ExitTake -> ()
exception ExitTakeWhile
let take_while p seq k =
try
seq (fun x -> if p x then k x else raise ExitTakeWhile)
with ExitTakeWhile -> ()
let drop n seq k =
let count = ref 0 in
seq (fun x -> if !count >= n then k x else incr count)
let drop_while p seq k =
let drop = ref true in
seq (fun x ->
if !drop
then if p x then () else (drop := false; k x)
else k x)
let rev seq =
let l = MList.of_seq seq in
fun k -> MList.iter_rev k l
exception ExitForall
let for_all p seq =
try
seq (fun x -> if not (p x) then raise ExitForall);
true
with ExitForall -> false
exception ExitExists
(** Exists there some element satisfying the predicate? *)
let exists p seq =
try
seq (fun x -> if p x then raise ExitExists);
false
with ExitExists -> true
let mem ?(eq=(=)) x seq = exists (eq x) seq
exception ExitFind
let find f seq =
let r = ref None in
begin try
seq (fun x -> match f x with
| None -> ()
| Some _ as res -> r := res; raise ExitFind
);
with ExitFind -> ()
end;
!r
let length seq =
let r = ref 0 in
seq (fun _ -> incr r);
!r
exception ExitIsEmpty
let is_empty seq =
try seq (fun _ -> raise ExitIsEmpty); true
with ExitIsEmpty -> false
(** {2 Transform a sequence} *)
let empty2 _ = ()
let is_empty2 seq2 =
try ignore (seq2 (fun _ _ -> raise ExitIsEmpty)); true
with ExitIsEmpty -> false
let length2 seq2 =
let r = ref 0 in
seq2 (fun _ _ -> incr r);
!r
let zip seq2 k = seq2 (fun x y -> k (x,y))
let unzip seq k = seq (fun (x,y) -> k x y)
let zip_i seq k =
let r = ref 0 in
seq (fun x -> let n = !r in incr r; k n x)
let fold2 f acc seq2 =
let acc = ref acc in
seq2 (fun x y -> acc := f !acc x y);
!acc
let iter2 f seq2 = seq2 f
let map2 f seq2 k = seq2 (fun x y -> k (f x y))
let map2_2 f g seq2 k =
seq2 (fun x y -> k (f x y) (g x y))
(** {2 Basic data structures converters} *)
let to_list seq = List.rev (fold (fun y x -> x::y) [] seq)
let to_rev_list seq = fold (fun y x -> x :: y) [] seq
let of_list l k = List.iter k l
let on_list f l =
to_list (f (of_list l))
let to_opt = head
let of_opt o k = match o with
| None -> ()
| Some x -> k x
let to_array seq =
let l = MList.of_seq seq in
let n = MList.length l in
if n = 0
then [||]
else begin
let a = Array.make n (MList.get l 0) in
MList.iteri (fun i x -> a.(i) <- x) l;
a
end
let of_array a k =
for i = 0 to Array.length a - 1 do
k (Array.unsafe_get a i)
done
let of_array_i a k =
for i = 0 to Array.length a - 1 do
k (i, Array.unsafe_get a i)
done
let of_array2 a k =
for i = 0 to Array.length a - 1 do
k i (Array.unsafe_get a i)
done
let array_slice a i j k =
assert (i >= 0 && j < Array.length a);
for idx = i to j do
k a.(idx); (* iterate on sub-array *)
done
let of_stream s k = Stream.iter k s
let to_stream seq =
let l = MList.of_seq seq in
MList.to_stream l
let to_stack s seq = iter (fun x -> Stack.push x s) seq
let of_stack s k = Stack.iter k s
let to_queue q seq = seq (fun x -> Queue.push x q)
let of_queue q k = Queue.iter k q
let hashtbl_add h seq =
seq (fun (k,v) -> Hashtbl.add h k v)
let hashtbl_replace h seq =
seq (fun (k,v) -> Hashtbl.replace h k v)
let to_hashtbl seq =
let h = Hashtbl.create 3 in
hashtbl_replace h seq;
h
let to_hashtbl2 seq2 =
let h = Hashtbl.create 3 in
seq2 (fun k v -> Hashtbl.replace h k v);
h
let of_hashtbl h k = Hashtbl.iter (fun a b -> k (a, b)) h
let of_hashtbl2 h k = Hashtbl.iter k h
let hashtbl_keys h k = Hashtbl.iter (fun a _ -> k a) h
let hashtbl_values h k = Hashtbl.iter (fun _ b -> k b) h
let of_str s k = String.iter k s
let to_str seq =
let b = Buffer.create 64 in
iter (fun c -> Buffer.add_char b c) seq;
Buffer.contents b
let concat_str seq =
let b = Buffer.create 64 in
iter (Buffer.add_string b) seq;
Buffer.contents b
exception OneShotSequence
let of_in_channel ic =
let first = ref true in
fun k ->
if not !first
then raise OneShotSequence
else (
first := false;
try
while true do
let c = input_char ic in k c
done
with End_of_file -> ()
)
let to_buffer seq buf =
seq (fun c -> Buffer.add_char buf c)
(** Iterator on integers in [start...stop] by steps 1 *)
let int_range ~start ~stop k =
for i = start to stop do k i done
let int_range_dec ~start ~stop k =
for i = start downto stop do k i done
let of_set (type s) (type v) m set =
let module S = (val m : Set.S with type t = s and type elt = v) in
fun k -> S.iter k set
let to_set (type s) (type v) m seq =
let module S = (val m : Set.S with type t = s and type elt = v) in
fold
(fun set x -> S.add x set)
S.empty seq
type 'a gen = unit -> 'a option
type 'a klist = unit -> [`Nil | `Cons of 'a * 'a klist]
let of_gen g =
(* consume the generator to build a MList *)
let rec iter1 k = match g () with
| None -> ()
| Some x -> k x; iter1 k
in
let l = MList.of_seq iter1 in
MList.to_seq l
let to_gen seq =
let l = MList.of_seq seq in
MList.to_gen l
let rec of_klist l k = match l() with
| `Nil -> ()
| `Cons (x,tl) -> k x; of_klist tl k
let to_klist seq =
let l = MList.of_seq seq in
MList.to_klist l
(** {2 Functorial conversions between sets and sequences} *)
module Set = struct
module type S = sig
include Set.S
val of_seq : elt sequence -> t
val to_seq : t -> elt sequence
val to_list : t -> elt list
val of_list : elt list -> t
end
(** Create an enriched Set module from the given one *)
module Adapt(X : Set.S) : S with type elt = X.elt and type t = X.t = struct
let to_seq set k = X.iter k set
let of_seq seq = fold (fun set x -> X.add x set) X.empty seq
let to_list set = to_list (to_seq set)
include X
let of_list l = List.fold_left (fun set x -> add x set) empty l
end
(** Functor to build an extended Set module from an ordered type *)
module Make(X : Set.OrderedType) = struct
module MySet = Set.Make(X)
include Adapt(MySet)
end
end
(** {2 Conversion between maps and sequences.} *)
module Map = struct
module type S = sig
include Map.S
val to_seq : 'a t -> (key * 'a) sequence
val of_seq : (key * 'a) sequence -> 'a t
val keys : 'a t -> key sequence
val values : 'a t -> 'a sequence
val to_list : 'a t -> (key * 'a) list
val of_list : (key * 'a) list -> 'a t
end
(** Adapt a pre-existing Map module to make it sequence-aware *)
module Adapt(M : Map.S) = struct
let to_seq m = from_iter (fun k -> M.iter (fun x y -> k (x,y)) m)
let of_seq seq = fold (fun m (k,v) -> M.add k v m) M.empty seq
let keys m = from_iter (fun k -> M.iter (fun x _ -> k x) m)
let values m = from_iter (fun k -> M.iter (fun _ y -> k y) m)
let of_list l = of_seq (of_list l)
let to_list x = to_list (to_seq x)
include M
end
(** Create an enriched Map module, with sequence-aware functions *)
module Make(V : Map.OrderedType) : S with type key = V.t = struct
module M = Map.Make(V)
include Adapt(M)
end
end
(** {2 Infinite sequences of random values} *)
let random_int bound = forever (fun () -> Random.int bound)
let random_bool = forever Random.bool
let random_float bound = forever (fun () -> Random.float bound)
let random_array a k =
assert (Array.length a > 0);
while true do
let i = Random.int (Array.length a) in
k a.(i);
done
let random_list l = random_array (Array.of_list l)
(** {2 Infix functions} *)
module Infix = struct
let (--) i j = int_range ~start:i ~stop:j
let (--^) i j = int_range_dec ~start:i ~stop:j
let (>>=) x f = flat_map f x
let (>|=) x f = map f x
let (<*>) funs args k =
funs (fun f -> args (fun x -> k (f x)))
let (<+>) = append
end
include Infix
(** {2 Pretty printing of sequences} *)
(** Pretty print a sequence of ['a], using the given pretty printer
to print each elements. An optional separator string can be provided. *)
let pp_seq ?(sep=", ") pp_elt formatter seq =
let first = ref true in
seq
(fun x ->
(if !first then first := false
else begin
Format.pp_print_string formatter sep;
Format.pp_print_cut formatter ();
end);
pp_elt formatter x)
let pp_buf ?(sep=", ") pp_elt buf seq =
let first = ref true in
seq
(fun x ->
if !first then first := false else Buffer.add_string buf sep;
pp_elt buf x)
let to_string ?sep pp_elt seq =
let buf = Buffer.create 25 in
pp_buf ?sep (fun buf x -> Buffer.add_string buf (pp_elt x)) buf seq;
Buffer.contents buf
(** {2 Basic IO} *)
module IO = struct
let lines_of ?(mode=0o644) ?(flags=[Open_rdonly]) filename =
fun k ->
let ic = open_in_gen flags mode filename in
try
while true do
let line = input_line ic in
k line
done
with
| End_of_file -> close_in ic
| e -> close_in_noerr ic; raise e
let chunks_of ?(mode=0o644) ?(flags=[]) ?(size=1024) filename =
fun k ->
let ic = open_in_gen flags mode filename in
try
let buf = Bytes.create size in
let n = ref 0 in
let stop = ref false in
while not !stop do
n := 0;
(* try to read [size] chars. If [input] returns [0] it means
the end of file, so we stop, but first we yield the current chunk *)
while !n < size && not !stop do
let n' = input ic buf !n (size - !n) in
if n' = 0 then stop := true else n := !n + n';
done;
if !n > 0
then k (Bytes.sub_string buf 0 !n)
done;
close_in ic
with e ->
close_in_noerr ic;
raise e
let write_bytes_to ?(mode=0o644) ?(flags=[Open_creat;Open_wronly]) filename seq =
let oc = open_out_gen flags mode filename in
try
seq (fun s -> output oc s 0 (Bytes.length s));
close_out oc
with e ->
close_out oc;
raise e
let write_to ?mode ?flags filename seq =
write_bytes_to ?mode ?flags filename (map Bytes.unsafe_of_string seq)
let write_bytes_lines ?mode ?flags filename seq =
let ret = Bytes.unsafe_of_string "\n" in
write_bytes_to ?mode ?flags filename (snoc (intersperse ret seq) ret)
let write_lines ?mode ?flags filename seq =
write_bytes_lines ?mode ?flags filename (map Bytes.unsafe_of_string seq)
end