update raytracer benchmark

This commit is contained in:
Simon Cruanes 2023-06-08 15:48:28 -04:00
parent 112e5a183b
commit 0ace7726f4
No known key found for this signature in database
GPG key ID: EBFFF6F283F3A2B4
8 changed files with 305 additions and 205 deletions

View file

@ -28,4 +28,14 @@ bench-fib:
hyperfine -L psize $(BENCH_PSIZE) \
'./_build/default/benchs/fib_rec.exe -cutoff $(BENCH_CUTOFF) -niter $(NITER) -psize={psize} -n $(N)'
NX?=400
NY?=200
NS?=150
RAYOUT?=out.ppm
RAY_J?=1,4,8,16
bench-raytracer:
dune build $(DUNE_OPTS_BENCH) benchs/raytracer/raytracer.exe
hyperfine -L j $(RAY_J) \
'./_build/default/benchs/raytracer/raytracer.exe -nx=$(NX) -ny=$(NY) -ns=$(NS) -j={j}'
.PHONY: test clean

View file

@ -1,4 +1,5 @@
; parallel version of https://github.com/samrat/rayml
(executable
(name raytracer)
(flags :standard -warn-error -a+8))
(name raytracer)
(libraries moonpool unix))

View file

@ -1,10 +1,7 @@
type ray = { origin: Vec3.vec3;
dir: Vec3.vec3 }
type ray = {
origin: Vec3.vec3;
dir: Vec3.vec3;
}
let point_at_parameter r t =
Vec3.add r.origin (Vec3.mul t r.dir)
let create o d =
{ origin = o;
dir = d }
;;
let point_at_parameter r t = Vec3.add r.origin (Vec3.mul t r.dir)
let create o d = { origin = o; dir = d }

View file

@ -1,218 +1,323 @@
open Printf
open Vec3
open Ray
open Moonpool
type material = Lambertian of Vec3.vec3 (* albedo *)
| Metal of Vec3.vec3 * float (* albedo, fuzz *)
| Dielectric of float (* refractive index *)
let ( let@ ) = ( @@ )
let fpf = Printf.fprintf
let pf = Printf.printf
type sphere = { center: Vec3.vec3;
radius: float;
mat: material;
}
type material =
| Lambertian of Vec3.vec3 (* albedo *)
| Metal of Vec3.vec3 * float (* albedo, fuzz *)
| Dielectric of float (* refractive index *)
type hitable = Sphere of sphere
| World of hitable list
type sphere = {
center: Vec3.vec3;
radius: float;
mat: material;
}
type hitable =
| Sphere of sphere
| World of hitable list
type hit_rec = { t : float;
p: Vec3.vec3;
normal: Vec3.vec3;
mat: material option; }
type hit_rec = {
t: float;
p: Vec3.vec3;
normal: Vec3.vec3;
mat: material option;
}
type scatter = { ray : Ray.ray;
color: Vec3.vec3;
scatter: bool;}
type scatter = {
ray: Ray.ray;
color: Vec3.vec3;
scatter: bool;
}
type hit = hit_rec option
(* Produce a random point inside the unit sphere. Works by picking a
random point in the unit cube, rejecting if not inside the sphere. *)
let rec random_in_unit_sphere () =
let p = (Vec3.sub (Vec3.mul 2.0 (Vec3.of_floats ((Random.float 1.0),
(Random.float 1.0),
(Random.float 1.0))))
(Vec3.of_floats (1., 1., 1.))) in
if ((Vec3.dot p p) >= 1.0)
then p
else random_in_unit_sphere ()
let p =
Vec3.sub
(Vec3.mul 2.0
(Vec3.of_floats (Random.float 1.0, Random.float 1.0, Random.float 1.0)))
(Vec3.of_floats (1., 1., 1.))
in
if Vec3.dot p p >= 1.0 then
p
else
random_in_unit_sphere ()
let reflect v n =
Vec3.sub v (Vec3.mul (2. *. (Vec3.dot v n)) n)
let reflect v n = Vec3.sub v (Vec3.mul (2. *. Vec3.dot v n) n)
let refract v n ni_over_nt =
let uv = Vec3.unit_vector v in
let dt = Vec3.dot uv n in
let discriminant = 1.0 -. ((ni_over_nt*.ni_over_nt) *. (1.0 -. dt*.dt)) in
if discriminant > 0.0
then
let refracted = (Vec3.sub (Vec3.mul ni_over_nt (Vec3.sub v (Vec3.mul dt n))) (Vec3.mul (sqrt discriminant) n)) in
Some(refracted)
else None
let discriminant = 1.0 -. (ni_over_nt *. ni_over_nt *. (1.0 -. (dt *. dt))) in
if discriminant > 0.0 then (
let refracted =
Vec3.sub
(Vec3.mul ni_over_nt (Vec3.sub v (Vec3.mul dt n)))
(Vec3.mul (sqrt discriminant) n)
in
Some refracted
) else
None
let hit_scatter r_in hit_rec =
match hit_rec.mat with
(* reflect in random direction *)
Some(Lambertian(albedo)) ->
let target = (Vec3.add (Vec3.add hit_rec.p hit_rec.normal) (random_in_unit_sphere ())) in
let scatter = { ray = Ray.create hit_rec.p (Vec3.sub target hit_rec.p);
color = albedo;
scatter = true;}
in scatter
(* reflect in random direction *)
| Some (Lambertian albedo) ->
let target =
Vec3.add (Vec3.add hit_rec.p hit_rec.normal) (random_in_unit_sphere ())
in
let scatter =
{
ray = Ray.create hit_rec.p (Vec3.sub target hit_rec.p);
color = albedo;
scatter = true;
}
in
scatter
(* "shiny"- angle of reflectance = angle of incidence *)
| Some(Metal(albedo, fuzz)) ->
| Some (Metal (albedo, fuzz)) ->
let reflected = reflect (Vec3.unit_vector r_in.dir) hit_rec.normal in
let scattered_ray = Ray.create hit_rec.p (Vec3.add reflected (Vec3.mul fuzz (random_in_unit_sphere ()))) in
let scattered = { ray = scattered_ray;
color = albedo;
scatter = (Vec3.dot scattered_ray.dir hit_rec.normal) > 0.0;} in
let scattered_ray =
Ray.create hit_rec.p
(Vec3.add reflected (Vec3.mul fuzz (random_in_unit_sphere ())))
in
let scattered =
{
ray = scattered_ray;
color = albedo;
scatter = Vec3.dot scattered_ray.dir hit_rec.normal > 0.0;
}
in
scattered
| Some(Dielectric(ref_idx)) ->
| Some (Dielectric ref_idx) ->
let reflected = reflect (Vec3.unit_vector r_in.dir) hit_rec.normal in
let attenuation = Vec3.of_floats (1.0, 1.0, 1.0) in
let (outward_normal, ni_over_nt) =
if (Vec3.dot r_in.dir hit_rec.normal) > 0.0
then (Vec3.neg hit_rec.normal, ref_idx)
else (hit_rec.normal, 1.0 /. ref_idx) in
let outward_normal, ni_over_nt =
if Vec3.dot r_in.dir hit_rec.normal > 0.0 then
Vec3.neg hit_rec.normal, ref_idx
else
hit_rec.normal, 1.0 /. ref_idx
in
let scattered_ray =
match (refract r_in.dir outward_normal ni_over_nt) with
| Some(refracted) -> Ray.create hit_rec.p refracted
| None -> Ray.create hit_rec.p reflected in
match refract r_in.dir outward_normal ni_over_nt with
| Some refracted -> Ray.create hit_rec.p refracted
| None -> Ray.create hit_rec.p reflected
in
let scattered =
{ ray= scattered_ray;
color= attenuation;
scatter = false; } in
{ ray = scattered_ray; color = attenuation; scatter = false }
in
scattered
| None -> failwith "not a real material type"
let hit_sphere sphere ray (tmin, tmax) =
let hit_sphere sphere ray (tmin, tmax) : hit =
let oc = sub ray.origin sphere.center in
let a = dot ray.dir ray.dir in
let b = (dot oc ray.dir) in
let c = (dot oc oc) -. (sphere.radius *. sphere.radius) in
let discriminant = b*.b -. a*.c in
let b = dot oc ray.dir in
let c = dot oc oc -. (sphere.radius *. sphere.radius) in
let discriminant = (b *. b) -. (a *. c) in
if (discriminant > 0.0)
then
let t = (-.b -. (sqrt discriminant)) /. a in
if discriminant > 0.0 then (
let t = (-.b -. sqrt discriminant) /. a in
if (t < tmax && t > tmin)
then
if t < tmax && t > tmin then (
let p = Ray.point_at_parameter ray t in
Some { t = t;
p = p;
normal = mul (1. /. sphere.radius) (sub p sphere.center);
mat = Some(sphere.mat)
}
else
let t = (-.b +. (sqrt discriminant)) /. a in
if (t < tmax && t > tmin)
then
Some
{
t;
p;
normal = mul (1. /. sphere.radius) (sub p sphere.center);
mat = Some sphere.mat;
}
) else (
let t = (-.b +. sqrt discriminant) /. a in
if t < tmax && t > tmin then (
let p = Ray.point_at_parameter ray t in
Some { t = t;
p = p;
normal = mul (1. /. sphere.radius) (sub p sphere.center);
mat = Some(sphere.mat);
}
else None
else None
Some
{
t;
p;
normal = mul (1. /. sphere.radius) (sub p sphere.center);
mat = Some sphere.mat;
}
) else
None
)
) else
None
let rec hit_world world ray (tmin, tmax) =
List.fold_left
let rec hit_world (world : hitable list) ray (tmin, tmax) : hit =
List.fold_left
(fun acc h ->
let prev_rec = match acc with
None -> { t = tmax;
p = Vec3.of_floats (-1., -1., -1.);
normal = Vec3.of_floats (-1., -1., -1.);
mat = None }
| Some(r) -> r in
match (hit h ray (tmin, prev_rec.t)) with
Some(r) -> Some r
| None -> acc) None world
let prev_rec =
match acc with
| None ->
{
t = tmax;
p = Vec3.of_floats (-1., -1., -1.);
normal = Vec3.of_floats (-1., -1., -1.);
mat = None;
}
| Some r -> r
in
match hit h ray (tmin, prev_rec.t) with
| Some r -> Some r
| None -> acc)
None world
and hit h ray (tmin, tmax) =
and hit h ray (tmin, tmax) : hit =
match h with
Sphere(s) -> hit_sphere s ray (tmin, tmax)
| World(w) -> hit_world w ray (tmin, tmax)
| Sphere s -> hit_sphere s ray (tmin, tmax)
| World w -> hit_world w ray (tmin, tmax)
let rec get_color world ray depth =
match (hit world ray (0., Float.infinity)) with
Some hit_result ->
if (depth < 50)
then let s = hit_scatter ray hit_result in
Vec3.pmul s.color (get_color world s.ray (depth+1))
else Vec3.of_floats (0., 0., 0.)
let rec get_color world ray depth : vec3 =
match hit world ray (0., Float.infinity) with
| Some hit_result ->
if depth < 50 then (
let s = hit_scatter ray hit_result in
Vec3.pmul s.color (get_color world s.ray (depth + 1))
) else
Vec3.of_floats (0., 0., 0.)
| None ->
let unit_direction = unit_vector ray.dir in
let t = 0.5 *. (unit_direction.y +. 1.0) in
add (mul (1.0 -. t) {x= 1.0; y=1.0; z= 1.0}) (mul t {x= 0.5; y= 0.7; z= 1.0})
add
(mul (1.0 -. t) { x = 1.0; y = 1.0; z = 1.0 })
(mul t { x = 0.5; y = 0.7; z = 1.0 })
let write_to_file filename =
Random.self_init ();
let sphere1 = Sphere {center = Vec3.of_floats (0., 0., -1.);
radius = 0.5;
mat = Lambertian (Vec3.of_floats (0.8, 0.3, 0.3)) } in
let sphere2 = Sphere {center = Vec3.of_floats (0., -100.5, -1.);
radius = 100.0;
mat = Lambertian (Vec3.of_floats (0.8, 0.8, 0.0))} in
let sphere3 = Sphere {center = Vec3.of_floats (-1.0, 0., -1.);
radius = 0.5;
mat = Metal ((Vec3.of_floats (0.8, 0.6, 0.2)), 0.4)} in
let mk_world () =
let sphere1 =
Sphere
{
center = Vec3.of_floats (0., 0., -1.);
radius = 0.5;
mat = Lambertian (Vec3.of_floats (0.8, 0.3, 0.3));
}
in
let sphere2 =
Sphere
{
center = Vec3.of_floats (0., -100.5, -1.);
radius = 100.0;
mat = Lambertian (Vec3.of_floats (0.8, 0.8, 0.0));
}
in
let sphere3 =
Sphere
{
center = Vec3.of_floats (-1.0, 0., -1.);
radius = 0.5;
mat = Metal (Vec3.of_floats (0.8, 0.6, 0.2), 0.4);
}
in
(* let sphere4 = Sphere {center = Vec3.of_floats (1.0, 0., -1.); *)
(* radius = 0.5; *)
(* mat = Metal ((Vec3.of_floats (0.8, 0.8, 0.8)), 0.1)} in *)
let sphere4 = Sphere {center = Vec3.of_floats (1.0, 0.0, -1.);
radius = 0.5;
mat = Dielectric (1.5)} in
let world = World [sphere3; sphere2; sphere1; sphere4;] in
let sphere4 =
Sphere
{
center = Vec3.of_floats (1.0, 0.0, -1.);
radius = 0.5;
mat = Dielectric 1.5;
}
in
World [ sphere3; sphere2; sphere1; sphere4 ]
type config = {
nx: int;
ny: int;
ns: int;
j: int;
out: string;
}
let run (config : config) =
Random.self_init ();
let world = mk_world () in
let nx = 400 in
let ny = 200 in
let ns = 150 in (* samples per pixel *)
let oc = open_out filename in
fprintf oc "P3\n";
fprintf oc "%d\n" nx;
fprintf oc "%d\n" ny;
fprintf oc "\n255\n";
let ns = 150 in
(* samples per pixel *)
let oc = open_out config.out in
let@ () =
Fun.protect ~finally:(fun () ->
flush oc;
close_out oc)
in
fpf oc "P3\n";
fpf oc "%d\n" nx;
fpf oc "%d\n" ny;
fpf oc "\n255\n";
let lower_left_corner = Vec3.of_floats (-2., -1., -1.) in
let horizontal = Vec3.of_floats (4., 0., 0.) in
let vertical = Vec3.of_floats (0., 2., 0.) in
let origin = Vec3.of_floats (0., 0., 0.) in
for j = ny downto 1 do
for i = 0 to nx-1 do
let color = ref {x=0.; y=0.; z=0.} in
for s = 0 to ns-1 do
for i = 0 to nx - 1 do
let color = ref { x = 0.; y = 0.; z = 0. } in
for _step = 0 to ns - 1 do
(* NOTE: Random.float is bounds __inclusive__ *)
let u = (Float.of_int i +. (Random.float 1.0)) /. (Float.of_int nx) in
let v = (Float.of_int j +. (Random.float 1.0)) /. (Float.of_int ny) in
let r = { origin = origin;
dir = Vec3.add lower_left_corner (Vec3.add (Vec3.mul u horizontal) (Vec3.mul v vertical)) } in
color := Vec3.add !color (get_color world r 0);
let u = (Float.of_int i +. Random.float 1.0) /. Float.of_int nx in
let v = (Float.of_int j +. Random.float 1.0) /. Float.of_int ny in
let r =
{
origin;
dir =
Vec3.add lower_left_corner
(Vec3.add (Vec3.mul u horizontal) (Vec3.mul v vertical));
}
in
color := Vec3.add !color (get_color world r 0)
done;
color := Vec3.mul (1. /. (Float.of_int ns)) !color ;
color := Vec3.mul (1. /. Float.of_int ns) !color;
(* gamma correction *)
color := Vec3.of_floats (sqrt(!color.x),
sqrt(!color.y),
sqrt(!color.z));
let {x=r; y=g; z=b} = !color in
let (ir, ig, ib) = (Int.of_float (r*.255.99),
Int.of_float (g*.255.99),
Int.of_float (b*.255.99)) in
fprintf oc "%d " ir;
fprintf oc "%d " ig;
fprintf oc "%d \n" ib;
done;
done;
Out_channel.close oc
color := Vec3.of_floats (sqrt !color.x, sqrt !color.y, sqrt !color.z);
let { x = r; y = g; z = b } = !color in
let ir, ig, ib =
( Int.of_float (r *. 255.99),
Int.of_float (g *. 255.99),
Int.of_float (b *. 255.99) )
in
fpf oc "%d " ir;
fpf oc "%d " ig;
fpf oc "%d \n" ib
done
done
let () =
write_to_file "out.ppm"
let nx = ref 400 in
let ny = ref 200 in
let ns = ref 150 in
let j = ref 4 in
let out = ref "out.ppm" in
let progress = ref false in
let opts =
[
"-j", Arg.Set_int j, " set minimum number of threads";
"-nx", Arg.Set_int nx, " pixels in x axis";
"-ny", Arg.Set_int ny, " pixels in y axis";
"-ns", Arg.Set_int ns, " number of samples per pixel";
"-o", Arg.Set_string out, " output file";
"-p", Arg.Set progress, " progress bar";
]
|> Arg.align
in
Arg.parse opts ignore "";
let config = { nx = !nx; ny = !ny; ns = !ns; out = !out; j = !j } in
let t = Unix.gettimeofday () in
run config;
let elapsed = Unix.gettimeofday () -. t in
pf "done in %.4fs\n%!" elapsed;
()

View file

@ -1,47 +1,29 @@
type vec3 = { x: float;
y: float;
z: float }
type vec3 = {
x: float;
y: float;
z: float;
}
let of_floats (e1, e2, e3) =
{x = e1; y = e2; z = e3}
let add v w =
{x = v.x +. w.x;
y = v.y +. w.y;
z = v.z +. w.z}
let sub v w =
{x = v.x -. w.x;
y = v.y -. w.y;
z = v.z -. w.z}
let neg v =
sub {x= 0.0; y=0.0; z=0.0} v
let dot v w =
v.x*.w.x +. v.y*.w.y +.v.z*.w.z
let of_floats (e1, e2, e3) = { x = e1; y = e2; z = e3 }
let add v w = { x = v.x +. w.x; y = v.y +. w.y; z = v.z +. w.z }
let sub v w = { x = v.x -. w.x; y = v.y -. w.y; z = v.z -. w.z }
let neg v = sub { x = 0.0; y = 0.0; z = 0.0 } v
let dot v w = (v.x *. w.x) +. (v.y *. w.y) +. (v.z *. w.z)
let cross v w =
{x = v.y*.w.z -. v.z*.w.y;
y = v.z*.w.x -. v.x*.w.z;
z = v.x*.w.y -. v.y*.w.x}
{
x = (v.y *. w.z) -. (v.z *. w.y);
y = (v.z *. w.x) -. (v.x *. w.z);
z = (v.x *. w.y) -. (v.y *. w.x);
}
let length v =
sqrt (dot v v)
let length v = sqrt (dot v v)
let unit_vector v =
let l = length v in
{ x = v.x /. l;
y = v.y /. l;
z = v.z /. l }
{ x = v.x /. l; y = v.y /. l; z = v.z /. l }
let mul t v =
{ x = t *. v.x;
y = t *. v.y;
z = t *. v.z }
let mul t v = { x = t *. v.x; y = t *. v.y; z = t *. v.z }
(* pairwise multiplication *)
let pmul v w =
{ x = v.x *. w.x;
y = v.y *. w.y;
z = v.z *. w.z; }
let pmul v w = { x = v.x *. w.x; y = v.y *. w.y; z = v.z *. w.z }

View file

@ -1,13 +1,15 @@
type vec3 = { x: float;
y: float;
z: float }
type vec3 = {
x: float;
y: float;
z: float;
}
val of_floats : float * float * float -> vec3
val add : vec3 -> vec3 -> vec3
val sub : vec3 -> vec3 -> vec3
val neg : vec3 -> vec3
val dot : vec3 -> vec3 -> float
val cross: vec3 -> vec3 -> vec3
val cross : vec3 -> vec3 -> vec3
val mul : float -> vec3 -> vec3
val unit_vector : vec3 -> vec3
val pmul : vec3 -> vec3 -> vec3

2
dune
View file

@ -1,5 +1,5 @@
(env
(_ (flags :standard -strict-sequence -warn-error -a+8 -w +a-4-40-70)))
(_ (flags :standard -strict-sequence -warn-error -a+8 -w +a-4-40-41-42-70)))
(mdx)

3
raytracer.sh Executable file
View file

@ -0,0 +1,3 @@
#!/bin/sh
DUNE_OPTS="--profile=release --display=quiet"
exec dune exec $DUNE_OPTS benchs/raytracer/raytracer.exe -- $@