wip: change Moonpool.Chan so it's bounded

also push/pop require effects, the OCaml 4 version only allows
for try_push/try_pop.
This commit is contained in:
Simon Cruanes 2024-09-25 21:32:11 -04:00
parent d8aa60558b
commit 35a69924d3
No known key found for this signature in database
GPG key ID: EBFFF6F283F3A2B4
3 changed files with 192 additions and 148 deletions

View file

@ -1,7 +1,8 @@
module A = Atomic_
type 'a or_error = 'a Fut.or_error
type 'a waiter = 'a Fut.promise
type 'a pop_waiter = 'a Fut.promise
type 'a push_waiter = 'a * unit Fut.promise
let[@inline] list_is_empty_ = function
| [] -> true
@ -11,6 +12,7 @@ let[@inline] list_is_empty_ = function
module Q : sig
type 'a t
val empty : 'a t
val return : 'a -> 'a t
val is_empty : _ t -> bool
@ -28,6 +30,7 @@ end = struct
invariant: if hd=[], then tl=[] *)
let empty = { hd = []; tl = [] }
let[@inline] return x : _ t = { hd = [ x ]; tl = [] }
let[@inline] make_ hd tl =
@ -56,138 +59,177 @@ end
exception Closed
type 'a state =
| Empty
| St_closed
| Elems of 'a Q.t
| Waiters of 'a waiter Q.t
type 'a t = {
q: 'a Queue.t;
mutex: Mutex.t; (** protects critical section *)
mutable closed: bool;
max_size: int;
push_waiters: Trigger.t Queue.t;
pop_waiters: Trigger.t Queue.t;
}
type 'a t = { st: 'a state A.t } [@@unboxed]
let create ~max_size () : _ t =
if max_size < 0 then invalid_arg "Chan: max_size < 0";
{
max_size;
mutex = Mutex.create ();
closed = false;
q = Queue.create ();
push_waiters = Queue.create ();
pop_waiters = Queue.create ();
}
let create () : _ t = { st = A.make Empty }
let try_push (self : _ t) x : bool =
let res = ref false in
if Mutex.try_lock self.mutex then (
if self.closed then (
Mutex.unlock self.mutex;
raise Closed
);
(** Produce a state from a queue of waiters *)
let[@inline] mk_st_waiters_ ws : _ state =
if Q.is_empty ws then
Empty
else
Waiters ws
(** Produce a state from a queue of elements *)
let[@inline] mk_st_elems_ q : _ state =
if Q.is_empty q then
Empty
else
Elems q
let push (self : _ t) x : unit =
while
let old_st = A.get self.st in
match old_st with
| St_closed -> raise Closed
| Empty -> not (A.compare_and_set self.st old_st (Elems (Q.return x)))
| Waiters ws ->
(* awake first waiter and give it [x] *)
let w, ws' = Q.pop_exn ws in
let new_st = mk_st_waiters_ ws' in
if A.compare_and_set self.st old_st new_st then (
Fut.fulfill w (Ok x);
false
) else
true
| Elems q -> not (A.compare_and_set self.st old_st (Elems (Q.push q x)))
do
Domain_.relax ()
done
match Queue.length self.q with
| 0 ->
let to_awake = Queue.create () in
Queue.push x self.q;
Queue.transfer self.pop_waiters to_awake;
res := true;
Mutex.unlock self.mutex;
(* wake up pop triggers if needed. Be careful to do that
outside the critical section*)
Queue.iter Trigger.signal to_awake
| n when n < self.max_size ->
Queue.push x self.q;
Mutex.unlock self.mutex
| _ -> Mutex.unlock self.mutex
);
!res
let try_pop (type elt) self : elt option =
let module M = struct
exception Found of elt
end in
try
(* a bit of spinning *)
for _retry = 1 to 10 do
let old_st = A.get self.st in
match old_st with
| Elems q ->
let x, q' = Q.pop_exn q in
let new_st = mk_st_elems_ q' in
if A.compare_and_set self.st old_st new_st then
raise_notrace (M.Found x)
else
Domain_.relax ()
| _ -> raise_notrace Exit
done;
None
with
| M.Found x -> Some x
| Exit -> None
let pop (type elt) (self : _ t) : elt Fut.t =
let module M = struct
exception Ret of elt
exception Fut of elt Fut.t
end in
try
while
let old_st = A.get self.st in
(match old_st with
| St_closed ->
let bt = Printexc.get_callstack 10 in
raise_notrace (M.Fut (Fut.fail Closed bt))
| Elems q ->
let x, q' = Q.pop_exn q in
let new_st = mk_st_elems_ q' in
if A.compare_and_set self.st old_st new_st then raise_notrace (M.Ret x)
| Empty ->
let fut, promise = Fut.make () in
let new_st = Waiters (Q.return promise) in
if A.compare_and_set self.st old_st new_st then
raise_notrace (M.Fut fut)
| Waiters ws ->
let fut, promise = Fut.make () in
(* add new promise at the end of the queue of waiters *)
let new_st = Waiters (Q.push ws promise) in
if A.compare_and_set self.st old_st new_st then
raise_notrace (M.Fut fut));
true
do
Domain_.relax ()
done;
(* never reached *)
assert false
with
| M.Ret x -> Fut.return x
| M.Fut f -> f
let pop_block_exn (self : 'a t) : 'a =
match try_pop self with
| Some x -> x
| None -> Fut.wait_block_exn @@ pop self
let res = ref None in
if Mutex.try_lock self.mutex then (
(match Queue.pop self.q with
| exception Queue.Empty ->
if self.closed then (
Mutex.unlock self.mutex;
raise Closed
)
| x -> res := Some x);
Mutex.unlock self.mutex
);
!res
let close (self : _ t) : unit =
while
let old_st = A.get self.st in
match old_st with
| St_closed -> false (* exit *)
| Elems _ | Empty -> not (A.compare_and_set self.st old_st St_closed)
| Waiters ws ->
if A.compare_and_set self.st old_st St_closed then (
(* fail all waiters with [Closed]. *)
let bt = Printexc.get_callstack 10 in
Q.iter (fun w -> Fut.fulfill_idempotent w (Error (Closed, bt))) ws;
false
) else
true
do
Domain_.relax ()
done
let q = Queue.create () in
Mutex.lock self.mutex;
if not self.closed then (
self.closed <- true;
Queue.transfer self.pop_waiters q;
Queue.transfer self.push_waiters q
);
Mutex.unlock self.mutex;
Queue.iter Trigger.signal q
[@@@ifge 5.0]
let pop_await self =
match try_pop self with
| Some x -> x
| None -> Fut.await @@ pop self
let rec push (self : _ t) x : unit =
Mutex.lock self.mutex;
if self.closed then (
Mutex.unlock self.mutex;
raise Closed
);
match Queue.length self.q with
| 0 ->
Queue.push x self.q;
let to_wakeup = Queue.create () in
Queue.transfer self.pop_waiters to_wakeup;
Mutex.unlock self.mutex;
Queue.iter Trigger.signal to_wakeup
| n when n < self.max_size ->
Queue.push x self.q;
Mutex.unlock self.mutex
| _ ->
let tr = Trigger.create () in
Queue.push tr self.push_waiters;
Mutex.unlock self.mutex;
Trigger.await_exn tr;
push self x
let rec pop (self : 'a t) : 'a =
Mutex.lock self.mutex;
match Queue.pop self.q with
| x ->
if Queue.is_empty self.q then (
let to_wakeup = Queue.create () in
Queue.transfer self.push_waiters to_wakeup;
Mutex.unlock self.mutex;
Queue.iter Trigger.signal to_wakeup
) else
Mutex.unlock self.mutex;
x
| exception Queue.Empty ->
if self.closed then (
Mutex.unlock self.mutex;
raise Closed
);
let tr = Trigger.create () in
Queue.push tr self.pop_waiters;
Mutex.unlock self.mutex;
Trigger.await_exn tr;
pop self
[@@@endif]
(* TODO: remove
(** A waiter queue, somewhat similar to a condition. *)
module Waiters_ = struct
type t = { waiters: Trigger.t Q.t A.t } [@@unboxed]
let create () : t = { waiters = A.make Q.empty }
let add_waiter self (tr : Trigger.t) : unit =
while
let q = A.get self.waiters in
not (A.compare_and_set self.waiters q (Q.push q tr))
do
Domain_.relax ()
done
let wait_await (self : t) : unit =
let tr = Trigger.create () in
add_waiter self tr;
Trigger.await_exn tr
exception Empty = Q.Empty
let rec pop_waiter (self : t) : Trigger.t =
let q = A.get self.waiters in
let x, q' = Q.pop_exn q in
if A.compare_and_set self.waiters q q' then
x
else (
Domain_.relax ();
pop_waiter self
)
let rec pop_all (self : t) : Trigger.t Q.t =
let q = A.get self.waiters in
if A.compare_and_set self.waiters q Q.empty then
q
else (
Domain_.relax ();
pop_all self
)
let signal (self : t) : unit =
match pop_waiter self with
| exception Empty -> ()
| tr -> Trigger.signal tr
let broadcast (self : t) : unit =
let waiters = pop_all self in
Q.iter Trigger.signal waiters
end
*)

View file

@ -1,12 +1,9 @@
(** Channels.
Channels are pipelines of values where threads can push into
one end, and pull from the other end.
The channels have bounded size. Push/pop return futures or can use effects
to provide an [await]-friendly version.
Unlike {!Moonpool.Blocking_queue}, channels are designed so
that pushing never blocks, and pop'ing values returns a future.
@since 0.3
The channels became bounded since @NEXT_RELEASE .
*)
type 'a or_error = 'a Fut.or_error
@ -14,39 +11,43 @@ type 'a or_error = 'a Fut.or_error
type 'a t
(** Channel carrying values of type ['a]. *)
val create : unit -> 'a t
val create : max_size:int -> unit -> 'a t
(** Create a channel. *)
exception Closed
val push : 'a t -> 'a -> unit
(** [push chan x] pushes [x] into [chan]. This does not block.
val try_push : 'a t -> 'a -> bool
(** [try_push chan x] pushes [x] into [chan]. This does not block.
Returns [true] if it succeeded in pushing.
@raise Closed if the channel is closed. *)
val pop : 'a t -> 'a Fut.t
(** Pop an element. This returns a future that will be
fulfilled when an element is available.
@raise Closed if the channel is closed, or fails the future
if the channel is closed before an element is available for it. *)
val try_pop : 'a t -> 'a option
(** [try_pop chan] pops and return an element if one is available
immediately. Otherwise it returns [None]. *)
val pop_block_exn : 'a t -> 'a
(** Like [pop], but blocks if an element is not available immediately.
The precautions around blocking from inside a thread pool
are the same as explained in {!Fut.wait_block}. *)
val close : _ t -> unit
(** Close the channel. Further push and pop calls will fail.
This is idempotent. *)
[@@@ifge 5.0]
val pop_await : 'a t -> 'a
(** Like {!pop} but suspends the current thread until an element is
available. See {!Fut.await} for more details.
@since 0.3 *)
val push : 'a t -> 'a -> unit
(** Push the value into the channel, suspending the current task
if the channel is currently full.
@raise Closed if the channel is closed
@since NEXT_RELEASE *)
val pop : 'a t -> 'a
(** Pop an element. This might suspend the current task if the
channel is currently empty.
@raise Closed if the channel is empty and closed.
@since NEXT_RELEASE *)
(*
val pop_block_exn : 'a t -> 'a
(** Like [pop], but blocks if an element is not available immediately.
The precautions around blocking from inside a thread pool
are the same as explained in {!Fut.wait_block}. *)
*)
[@@@endif]

View file

@ -1,4 +1,5 @@
module Mutex = Picos_std_sync.Mutex
module Chan = Chan
module Condition = Picos_std_sync.Condition
module Lock = Lock
module Event = Event