comprehensive BFS;

implemented LazyGraph.Dot.pp (and pp_enum to have more control);
LazyGraph.map and filter implemented too
This commit is contained in:
Simon Cruanes 2013-03-20 01:12:52 +01:00
parent 64a50fbedf
commit 1445104e2b
2 changed files with 138 additions and 52 deletions

View file

@ -149,6 +149,10 @@ module type S = sig
| `Other of string * string
] (** Dot attribute *)
val pp_enum : name:string -> Format.formatter ->
(attribute list,attribute list) Full.traverse_event Enum.t ->
unit
val pp : name:string -> (attribute list, attribute list) t ->
Format.formatter ->
vertex Enum.t -> unit
@ -192,7 +196,6 @@ module Make(X : HASHABLE) : S with type vertex = X.t = struct
(** A single node of the graph, with outgoing edges *)
and 'e path = (vertex * 'e * vertex) list
(** {2 Basic constructors} *)
let empty =
@ -223,73 +226,48 @@ module Make(X : HASHABLE) : S with type vertex = X.t = struct
| EdgeBackward (* toward the current trail *)
| EdgeTransverse (* toward a totally explored part of the graph *)
let bfs_full ?(id=ref 0) ?(explored=H.create 5) graph vertices =
let enum () =
let q = Queue.create () in (* queue of nodes to explore *)
Enum.iter (fun v -> Queue.push (v,[]) q) vertices;
let rec next () =
if Queue.is_empty q then raise Enum.EOG else
let v', path = Queue.pop q in
if H.mem explored v' then next ()
else match graph v' with
| Empty -> next ()
| Node (_, label, edges) ->
begin
H.add explored v' ();
(* explore neighbors *)
Enum.iter
(fun (e,v'') ->
let path' = (v'',e,v') :: path in
Queue.push (v'',path') q)
edges;
(* return this vertex *)
let i = !id in
incr id;
Enum.of_list [EnterVertex (v', label, i, path); ExitVertex v']
end
in next
in Enum.flatten enum
(* helper type *)
type 'e todo_item =
| DFSEnter of vertex * 'e path
| DFSExit of vertex
| DFSFollowEdge of 'e path
| FullEnter of vertex * 'e path
| FullExit of vertex
| FullFollowEdge of 'e path
(** Is [v] part of the [path]? *)
let rec mem_path path v =
match path with
| (v',_,v'')::path' ->
(X.equal v v') || (X.equal v v'') || (mem_path path' v)
| [] -> false
let dfs_full ?(id=ref 0) ?(explored=H.create 5) graph vertices =
let bfs_full ?(id=ref 0) ?(explored=H.create 5) graph vertices =
fun () ->
let s = Stack.create () in (* stack of nodes to explore *)
Enum.iter (fun v -> Stack.push (DFSEnter (v,[])) s) vertices;
let q = Queue.create () in (* queue of nodes to explore *)
Enum.iter (fun v -> Queue.push (FullEnter (v,[])) q) vertices;
let rec next () =
if Stack.is_empty s then raise Enum.EOG else
match Stack.pop s with
| DFSExit v' -> ExitVertex v'
| DFSEnter (v', path) ->
if Queue.is_empty q then raise Enum.EOG else
match Queue.pop q with
| FullEnter (v', path) ->
if H.mem explored v' then next ()
(* explore the node now *)
else begin match graph v' with
| Empty -> next ()
| Node (_, label, edges) ->
H.add explored v' ();
(* prepare to exit later *)
Stack.push (DFSExit v') s;
(* explore neighbors *)
Enum.iter
(fun (e,v'') ->
Stack.push (DFSFollowEdge ((v'', e, v') :: path)) s)
let path' = (v'',e,v') :: path in
Queue.push (FullFollowEdge path') q)
edges;
(* exit node afterward *)
Queue.push (FullExit v') q;
(* return this vertex *)
let i = !id in
incr id;
EnterVertex (v', label, i, path)
end
| DFSFollowEdge [] -> assert false
| DFSFollowEdge (((v'', e, v') :: path) as path') ->
| FullExit v' -> ExitVertex v'
| FullFollowEdge [] -> assert false
| FullFollowEdge (((v'', e, v') :: path) as path') ->
(* edge path .... v' --e--> v'' *)
if H.mem explored v''
then if mem_path path v''
@ -297,7 +275,48 @@ module Make(X : HASHABLE) : S with type vertex = X.t = struct
else MeetEdge (v'', e, v', EdgeTransverse)
else begin
(* explore this edge *)
Stack.push (DFSEnter (v'', path')) s;
Queue.push (FullEnter (v'', path')) q;
MeetEdge (v'', e, v', EdgeForward)
end
in next
let dfs_full ?(id=ref 0) ?(explored=H.create 5) graph vertices =
fun () ->
let s = Stack.create () in (* stack of nodes to explore *)
Enum.iter (fun v -> Stack.push (FullEnter (v,[])) s) vertices;
let rec next () =
if Stack.is_empty s then raise Enum.EOG else
match Stack.pop s with
| FullExit v' -> ExitVertex v'
| FullEnter (v', path) ->
if H.mem explored v' then next ()
(* explore the node now *)
else begin match graph v' with
| Empty -> next ()
| Node (_, label, edges) ->
H.add explored v' ();
(* prepare to exit later *)
Stack.push (FullExit v') s;
(* explore neighbors *)
Enum.iter
(fun (e,v'') ->
Stack.push (FullFollowEdge ((v'', e, v') :: path)) s)
edges;
(* return this vertex *)
let i = !id in
incr id;
EnterVertex (v', label, i, path)
end
| FullFollowEdge [] -> assert false
| FullFollowEdge (((v'', e, v') :: path) as path') ->
(* edge path .... v' --e--> v'' *)
if H.mem explored v''
then if mem_path path v''
then MeetEdge (v'', e, v', EdgeBackward)
else MeetEdge (v'', e, v', EdgeTransverse)
else begin
(* explore this edge *)
Stack.push (FullEnter (v'', path')) s;
MeetEdge (v'', e, v', EdgeForward)
end
in next
@ -319,11 +338,13 @@ module Make(X : HASHABLE) : S with type vertex = X.t = struct
let enum graph v = (Enum.empty, Enum.empty) (* TODO *)
let depth graph v = failwith "not implemented"
let depth graph v =
failwith "not implemented" (* TODO *)
(** Minimal path from the given Graph from the first vertex to
the second. It returns both the distance and the path *)
let min_path ?(distance=fun v1 e v2 -> 1) graph v1 v2 = failwith "not implemented"
let min_path ?(distance=fun v1 e v2 -> 1) graph v1 v2 =
failwith "not implemented"
(** {2 Lazy transformations} *)
@ -336,13 +357,28 @@ module Make(X : HASHABLE) : S with type vertex = X.t = struct
| Node (_, l1, e1), Node (_, l2, e2) ->
Node (v, combine l1 l2, Enum.append e1 e2)
let map ~vertices ~edges g = failwith "not implemented"
let map ~vertices ~edges g =
fun vertex ->
match g vertex with
| Empty -> Empty
| Node (_, l, edges_enum) ->
let edges_enum' = Enum.map (fun (e,v') -> (edges e), v') edges_enum in
Node (vertex, vertices l, edges_enum')
let filter ?(vertices=fun v l -> true) ?(edges=fun v1 e v2 -> true) g =
let filter ?(vertices=(fun v l -> true)) ?(edges=fun v1 e v2 -> true) g =
fun vertex ->
match g vertex with
| Empty -> Empty
| Node (_, l, edges_enum) when vertices vertex l ->
(* filter out edges *)
let edges_enum' = Enum.filter (fun (e,v') -> edges vertex e v') edges_enum in
Node (vertex, l, edges_enum')
| Node _ -> Empty (* filter out this vertex *)
let limit_depth ~max g =
(* TODO; this should be eager (compute depth by BFS) *)
failwith "not implemented"
let limit_depth ~max g = failwith "not implemented"
module Infix = struct
let (++) g1 g2 = union ?combine:None g1 g2
end
@ -357,8 +393,54 @@ module Make(X : HASHABLE) : S with type vertex = X.t = struct
| `Other of string * string
] (** Dot attribute *)
(** Print an enum of Full.traverse_event *)
let pp_enum ~name formatter events =
(* print an attribute *)
let print_attribute formatter attr =
match attr with
| `Color c -> Format.fprintf formatter "color=%s" c
| `Shape s -> Format.fprintf formatter "shape=%s" s
| `Weight w -> Format.fprintf formatter "weight=%d" w
| `Style s -> Format.fprintf formatter "style=%s" s
| `Label l -> Format.fprintf formatter "label=\"%s\"" l
| `Other (name, value) -> Format.fprintf formatter "%s=\"%s\"" name value
(* map from vertices to integers *)
and get_id =
let count = ref 0 in
let m = H.create 5 in
fun vertex ->
try H.find m vertex
with Not_found ->
let n = !count in
incr count;
H.replace m vertex n;
n
in
(* the unique name of a vertex *)
let pp_vertex formatter v =
Format.fprintf formatter "vertex_%d" (get_id v) in
(* print preamble *)
Format.fprintf formatter "@[<v2>digraph %s {@;" name;
(* traverse *)
Enum.iter
(function
| Full.EnterVertex (v, attrs, _, _) ->
Format.fprintf formatter " @[<h>%a [%a];@]@." pp_vertex v
(Enum.pp ~sep:"," print_attribute) (Enum.of_list attrs)
| Full.ExitVertex _ -> ()
| Full.MeetEdge (v2, attrs, v1, _) ->
Format.fprintf formatter " @[<h>%a -> %a [%a];@]@."
pp_vertex v1 pp_vertex v2
(Enum.pp ~sep:"," print_attribute)
(Enum.of_list attrs))
events;
(* close *)
Format.fprintf formatter "}@]@;@?";
()
let pp ~name graph formatter vertices =
failwith "not implemented"
let enum = Full.bfs_full graph vertices in
pp_enum ~name formatter enum
end
end

View file

@ -153,6 +153,10 @@ module type S = sig
| `Other of string * string
] (** Dot attribute *)
val pp_enum : name:string -> Format.formatter ->
(attribute list,attribute list) Full.traverse_event Enum.t ->
unit
val pp : name:string -> (attribute list, attribute list) t ->
Format.formatter ->
vertex Enum.t -> unit