CCGraph: more functions, better interface for traversals

This commit is contained in:
Simon Cruanes 2015-06-10 14:21:23 +02:00
parent d7b15ca81e
commit 20d72e5755
2 changed files with 378 additions and 101 deletions

View file

@ -35,6 +35,7 @@ module Seq = struct
let return x k = k x
let (>>=) a f k = a (fun x -> f x k)
let map f a k = a (fun x -> k (f x))
let filter_map f a k = a (fun x -> match f x with None -> () | Some y -> k y)
let iter f a = a f
let fold f acc a =
let acc = ref acc in
@ -51,10 +52,12 @@ type ('v, 'e) t = {
dest: 'e -> 'v;
}
type ('v, 'e) graph = ('v, 'e) t
(** Mutable bitset for values of type ['v] *)
type 'v tag_set = {
get_tag: 'v -> bool;
set_tag: 'v -> unit; (** Set tag to [true] for the given element *)
set_tag: 'v -> unit; (** Set tag for the given element *)
}
(** Mutable table with keys ['k] and values ['a] *)
@ -81,7 +84,19 @@ let mk_table (type k) ?(eq=(=)) ?(hash=Hashtbl.hash) size =
; size=(fun () -> H.length tbl)
}
(** {2 Traversals} *)
let mk_map (type k) ?(cmp=Pervasives.compare) () =
let module M = Map.Make(struct
type t = k
let compare = cmp
end) in
let tbl = ref M.empty in
{ mem=(fun k -> M.mem k !tbl)
; find=(fun k -> M.find k !tbl)
; add=(fun k v -> tbl := M.add k v !tbl)
; size=(fun () -> M.cardinal !tbl)
}
(** {2 Bags} *)
type 'a bag = {
push: 'a -> unit;
@ -140,24 +155,10 @@ let mk_heap ~leq =
)
}
let traverse ?tbl:(mk_tbl=mk_table ?eq:None ?hash:None) ~bag:mk_bag ~graph seq =
fun k ->
let bag = mk_bag() in
Seq.iter bag.push seq;
let tbl = mk_tbl 128 in
let bag = mk_bag () in
while not (bag.is_empty ()) do
let x = bag.pop () in
if not (tbl.mem x) then (
k x;
tbl.add x ();
Seq.iter
(fun e -> bag.push (graph.dest e))
(graph.children x)
)
done
(** {2 Traversals} *)
let traverse_tag ~tags ~bag ~graph seq =
module Traverse = struct
let generic_tag ~tags ~bag ~graph seq =
let first = ref true in
fun k ->
(* ensure linearity *)
@ -174,26 +175,23 @@ let traverse_tag ~tags ~bag ~graph seq =
)
done
let bfs ?tbl ~graph seq =
traverse ?tbl ~bag:mk_queue ~graph seq
let generic ?(tbl=mk_table 128) ~bag ~graph seq =
let tags = {
get_tag=tbl.mem;
set_tag=(fun v -> tbl.add v ());
} in
generic_tag ~tags ~bag ~graph seq
let bfs_tag ~tags ~graph seq =
traverse_tag ~tags ~bag:(mk_queue()) ~graph seq
let bfs ?tbl ~graph seq =
generic ?tbl ~bag:(mk_queue ()) ~graph seq
let dfs ?tbl ~graph seq =
traverse ?tbl ~bag:mk_stack ~graph seq
let bfs_tag ~tags ~graph seq =
generic_tag ~tags ~bag:(mk_queue()) ~graph seq
let dfs_tag ~tags ~graph seq =
traverse_tag ~tags ~bag:(mk_stack()) ~graph seq
let dijkstra ?(tbl=mk_table ?eq:None ?hash:None) ?(dist=fun _ -> 1) ~graph seq =
(* a table [('v * int) -> 'a] built from a ['v -> 'a] table *)
let mk_tbl' size =
let vertex_tbl = tbl size in
{ mem=(fun (v, _) -> vertex_tbl.mem v)
; find=(fun (v, _) -> vertex_tbl.find v)
; add=(fun (v, _) -> vertex_tbl.add v)
; size=vertex_tbl.size
let dijkstra_tag ?(dist=fun _ -> 1) ~tags ~graph seq =
let tags' = {
get_tag=(fun (v,_) -> tags.get_tag v);
set_tag=(fun (v,_) -> tags.set_tag v);
}
and seq' = Seq.map (fun v -> v, 0) seq
and graph' = {
@ -201,12 +199,199 @@ let dijkstra ?(tbl=mk_table ?eq:None ?hash:None) ?(dist=fun _ -> 1) ~graph seq =
origin=(fun (e, d) -> graph.origin e, d);
dest=(fun (e, d) -> graph.dest e, d + dist e);
} in
let mk_bag () = mk_heap ~leq:(fun (_, d1) (_, d2) -> d1 <= d2) in
traverse ~tbl:mk_tbl' ~bag:mk_bag ~graph:graph' seq'
let dijkstra_tag ?(dist=fun _ -> 1) ~tags ~graph seq = assert false (* TODO *)
let bag = mk_heap ~leq:(fun (_, d1) (_, d2) -> d1 <= d2) in
generic_tag ~tags:tags' ~bag ~graph:graph' seq'
let dijkstra ?(tbl=mk_table 128) ?dist ~graph seq =
let tags = {
get_tag=tbl.mem;
set_tag=(fun v -> tbl.add v ());
} in
dijkstra_tag ~tags ?dist ~graph seq
let dfs ?tbl ~graph seq =
generic ?tbl ~bag:(mk_stack ()) ~graph seq
let dfs_tag ~tags ~graph seq =
generic_tag ~tags ~bag:(mk_stack()) ~graph seq
module Event = struct
type edge_kind = [`Forward | `Back | `Cross ]
type 'e path = 'e list
(** A traversal is a sequence of such events *)
type ('v,'e) t =
[ `Enter of 'v * int * 'e path (* unique index in traversal, path from start *)
| `Exit of 'v
| `Edge of 'e * edge_kind
]
let get_vertex = function
| `Enter (v, _, _) -> Some (v, `Enter)
| `Exit v -> Some (v, `Exit)
| `Edge _ -> None
let get_enter = function
| `Enter (v, _, _) -> Some v
| `Exit _
| `Edge _ -> None
let get_exit = function
| `Exit v -> Some v
| `Enter _
| `Edge _ -> None
let get_edge = function
| `Edge (e, _) -> Some e
| `Enter _
| `Exit _ -> None
let get_edge_kind = function
| `Edge (e, k) -> Some (e, k)
| `Enter _
| `Exit _ -> None
(* is [v] the origin of some edge in [path]? *)
let rec list_mem_ ~eq ~graph v path = match path with
| [] -> false
| e :: path' ->
eq v (graph.origin e) || list_mem_ ~eq ~graph v path'
let dfs_tag ?(eq=(=)) ~tags ~graph seq =
let first = ref true in
fun k ->
if !first then first := false else raise Sequence_once;
let bag = mk_stack() in
let n = ref 0 in
Seq.iter
(fun v ->
(* start DFS from this vertex *)
bag.push (`Enter (v, []));
while not (bag.is_empty ()) do
match bag.pop () with
| `Enter (x, path) ->
if not (tags.get_tag x) then (
let num = !n in
incr n;
tags.set_tag x;
k (`Enter (x, num, path));
bag.push (`Exit x);
Seq.iter
(fun e -> bag.push (`Edge (e, e :: path)))
(graph.children x);
)
| `Exit x -> k (`Exit x)
| `Edge (e, path) ->
let v = graph.dest e in
let edge_kind =
if tags.get_tag v
then if list_mem_ ~eq ~graph v path
then `Back
else `Cross
else `Forward
in
k (`Edge (e, edge_kind))
done
) seq
let dfs ?(tbl=mk_table 128) ?eq ~graph seq =
let tags = {
set_tag=(fun v -> tbl.add v ());
get_tag=tbl.mem;
} in
dfs_tag ?eq ~tags ~graph seq
end
end
module Dot = struct
type attribute = [
| `Color of string
| `Shape of string
| `Weight of int
| `Style of string
| `Label of string
| `Other of string * string
] (** Dot attribute *)
let pp_list pp_x out l =
Format.pp_print_string out "[";
List.iteri (fun i x ->
if i > 0 then Format.fprintf out ",@;";
pp_x out x
) l;
Format.pp_print_string out "]"
(** Print an enum of Full.traverse_event *)
let pp_seq
?(tbl=mk_table 128)
?(attrs_v=fun _ -> [])
?(attrs_e=fun _ -> [])
?(name="graph")
~graph out seq =
(* print an attribute *)
let pp_attr out attr = match attr with
| `Color c -> Format.fprintf out "color=%s" c
| `Shape s -> Format.fprintf out "shape=%s" s
| `Weight w -> Format.fprintf out "weight=%d" w
| `Style s -> Format.fprintf out "style=%s" s
| `Label l -> Format.fprintf out "label=\"%s\"" l
| `Other (name, value) -> Format.fprintf out "%s=\"%s\"" name value
(* map from vertices to integers *)
and get_id =
let count = ref 0 in
fun v ->
try tbl.find v
with Not_found ->
let n = !count in
incr count;
tbl.add v n;
n
in
(* the unique name of a vertex *)
let pp_vertex out v = Format.fprintf out "vertex_%d" (get_id v) in
(* print preamble *)
Format.fprintf out "@[<v2>digraph %s {@;" name;
(* traverse *)
let tags = {
get_tag=tbl.mem;
set_tag=(fun v -> ignore (get_id v)); (* allocate new ID *)
} in
let events = Traverse.Event.dfs_tag ~tags ~graph seq in
Seq.iter
(function
| `Enter (v, _n, _path) ->
let attrs = attrs_v v in
Format.fprintf out " @[<h>%a %a;@]@." pp_vertex v (pp_list pp_attr) attrs
| `Exit _ -> ()
| `Edge (e, _) ->
let v1 = graph.origin e in
let v2 = graph.dest e in
let attrs = attrs_e e in
Format.fprintf out " @[<h>%a -> %a %a;@]@."
pp_vertex v1 pp_vertex v2
(pp_list pp_attr)
attrs
) events;
(* close *)
Format.fprintf out "}@]@;@?";
()
let pp ?tbl ?attrs_v ?attrs_e ?name ~graph fmt v =
pp_seq ?tbl ?attrs_v ?attrs_e ?name ~graph fmt (Seq.return v)
let with_out filename f =
let oc = open_out filename in
try
let fmt = Format.formatter_of_out_channel oc in
let x = f fmt in
Format.pp_print_flush fmt ();
close_out oc;
x
with e ->
close_out oc;
raise e
end

View file

@ -40,6 +40,7 @@ module Seq : sig
val return : 'a -> 'a sequence
val (>>=) : 'a t -> ('a -> 'b t) -> 'b t
val map : ('a -> 'b) -> 'a t -> 'b t
val filter_map : ('a -> 'b option) -> 'a t -> 'b t
val iter : ('a -> unit) -> 'a t -> unit
val fold: ('b -> 'a -> 'b) -> 'b -> 'a t -> 'b
end
@ -53,10 +54,12 @@ type ('v, 'e) t = {
dest: 'e -> 'v;
}
(** Mutable bitset for values of type ['v] *)
type ('v, 'e) graph = ('v, 'e) t
(** Mutable tags from values of type ['v] to tags of type [bool] *)
type 'v tag_set = {
get_tag: 'v -> bool;
set_tag: 'v -> unit; (** Set tag to [true] for the given element *)
set_tag: 'v -> unit; (** Set tag for the given element *)
}
(** Mutable table with keys ['k] and values ['a] *)
@ -70,10 +73,13 @@ type ('k, 'a) table = {
(** Mutable set *)
type 'a set = ('a, unit) table
(** Default implementation for {!table}: a {!Hashtbl.t} *)
val mk_table: ?eq:('k -> 'k -> bool) -> ?hash:('k -> int) -> int -> ('k, 'a) table
(** Default implementation for {!table}: a {!Hashtbl.t} *)
(** {2 Traversals} *)
val mk_map: ?cmp:('k -> 'k -> int) -> unit -> ('k, 'a) table
(** Use a {!Map.S} underneath *)
(** {2 Bags of vertices} *)
(** Bag of elements of type ['a] *)
type 'a bag = {
@ -89,43 +95,129 @@ val mk_heap: leq:('a -> 'a -> bool) -> 'a bag
(** [mk_heap ~leq] makes a priority queue where [leq x y = true] means that
[x] is smaller than [y] and should be prioritary *)
val traverse: ?tbl:(int -> 'v set) ->
bag:(unit -> 'v bag) ->
graph:('v, 'e) t ->
'v sequence -> 'v sequence
(** Traversal of the given graph, starting from a sequence
of vertices, using the given bag to choose the next vertex to
explore. Each vertex is visited at most once. *)
(** {2 Traversals} *)
val traverse_tag: tags:'v tag_set ->
module Traverse : sig
val generic: ?tbl:'v set ->
bag:'v bag ->
graph:('v, 'e) t ->
'v sequence ->
'v sequence_once
(** One-shot traversal of the graph using a tag set and the given bag *)
(** Traversal of the given graph, starting from a sequence
of vertices, using the given bag to choose the next vertex to
explore. Each vertex is visited at most once. *)
val bfs: ?tbl:(int -> 'v set) -> graph:('v, 'e) t -> 'v sequence -> 'v sequence
val generic_tag: tags:'v tag_set ->
bag:'v bag ->
graph:('v, 'e) t ->
'v sequence ->
'v sequence_once
(** One-shot traversal of the graph using a tag set and the given bag *)
val bfs_tag: tags:'v tag_set -> graph:('v, 'e) t -> 'v sequence -> 'v sequence_once
val dfs: ?tbl:'v set ->
graph:('v, 'e) t ->
'v sequence ->
'v sequence_once
val dfs: ?tbl:(int -> 'v set) -> graph:('v, 'e) t -> 'v sequence -> 'v sequence
val dfs_tag: tags:'v tag_set ->
graph:('v, 'e) t ->
'v sequence ->
'v sequence_once
val dfs_tag: tags:'v tag_set -> graph:('v, 'e) t -> 'v sequence -> 'v sequence_once
val bfs: ?tbl:'v set ->
graph:('v, 'e) t ->
'v sequence ->
'v sequence_once
val dijkstra : ?tbl:(int -> 'v set) ->
val bfs_tag: tags:'v tag_set ->
graph:('v, 'e) t ->
'v sequence ->
'v sequence_once
val dijkstra : ?tbl:'v set ->
?dist:('e -> int) ->
graph:('v, 'e) t ->
'v sequence ->
('v * int) sequence
(** Dijkstra algorithm, traverses a graph in increasing distance order.
('v * int) sequence_once
(** Dijkstra algorithm, traverses a graph in increasing distance order.
Yields each vertex paired with its distance to the set of initial vertices
(the smallest distance needed to reach the node from the initial vertices)
@param dist distance from origin of the edge to destination,
must be strictly positive. Default is 1 for every edge *)
val dijkstra_tag : ?dist:('e -> int) ->
val dijkstra_tag : ?dist:('e -> int) ->
tags:'v tag_set ->
graph:('v, 'e) t ->
'v sequence ->
('v * int) sequence_once
(** {2 More detailed interface} *)
module Event : sig
type edge_kind = [`Forward | `Back | `Cross ]
type 'e path = 'e list
(** A traversal is a sequence of such events *)
type ('v,'e) t =
[ `Enter of 'v * int * 'e path (* unique index in traversal, path from start *)
| `Exit of 'v
| `Edge of 'e * edge_kind
]
val get_vertex : ('v, 'e) t -> ('v * [`Enter | `Exit]) option
val get_enter : ('v, 'e) t -> 'v option
val get_exit : ('v, 'e) t -> 'v option
val get_edge : ('v, 'e) t -> 'e option
val get_edge_kind : ('v, 'e) t -> ('e * edge_kind) option
val dfs: ?tbl:'v set ->
?eq:('v -> 'v -> bool) ->
graph:('v, 'e) graph ->
'v sequence ->
('v,'e) t sequence_once
(** Full version of DFS.
@param eq equality predicate on vertices *)
val dfs_tag: ?eq:('v -> 'v -> bool) ->
tags:'v tag_set ->
graph:('v, 'e) graph ->
'v sequence ->
('v,'e) t sequence_once
(** Full version of DFS using integer tags
@param eq equality predicate on vertices *)
end
end
(** {2 Pretty printing in the DOT (graphviz) format} *)
module Dot : sig
type attribute = [
| `Color of string
| `Shape of string
| `Weight of int
| `Style of string
| `Label of string
| `Other of string * string
] (** Dot attribute *)
val pp : ?tbl:('v,int) table ->
?attrs_v:('v -> attribute list) ->
?attrs_e:('e -> attribute list) ->
?name:string ->
graph:('v,'e) t ->
Format.formatter ->
'v ->
unit
val pp_seq : ?tbl:('v,int) table ->
?attrs_v:('v -> attribute list) ->
?attrs_e:('e -> attribute list) ->
?name:string ->
graph:('v,'e) t ->
Format.formatter ->
'v sequence ->
unit
val with_out : string -> (Format.formatter -> 'a) -> 'a
(** Shortcut to open a file and write to it *)
end