add CCArray1 in containers.bigarray, a module on 1-dim bigarrays

This commit is contained in:
Simon Cruanes 2015-06-24 00:03:54 +02:00
parent 48aba9e49e
commit 2ced134868
3 changed files with 1086 additions and 1 deletions

2
_oasis
View file

@ -112,7 +112,7 @@ Library "containers_advanced"
Library "containers_bigarray"
Path: src/bigarray
Modules: CCBigstring
Modules: CCBigstring, CCArray1
FindlibName: bigarray
FindlibParent: containers
BuildDepends: containers, bigarray, bytes

724
src/bigarray/CCArray1.ml Normal file
View file

@ -0,0 +1,724 @@
(*
copyright (c) 2013-2015, simon cruanes
all rights reserved.
redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with
the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*)
(** {1 Bigarrays of dimension 1 *)
module A = Bigarray.Array1
type 'a printer = Format.formatter -> 'a -> unit
type 'a sequence = ('a -> unit) -> unit
type 'a or_error = [`Ok of 'a | `Error of string]
type random = Random.State.t
type json = [ `Assoc of (string * json) list
| `Bool of bool
| `Float of float
| `Int of int
| `List of json list
| `Null
| `String of string ]
type 'a to_json = 'a -> json
type 'a of_json = json -> 'a or_error
type ('a, 'b, 'perm) t =
('a, 'b, Bigarray.c_layout) Bigarray.Array1.t
constraint 'perm = [< `R | `W]
type ('a, 'b, 'perm) array_ = ('a, 'b, 'perm) t
exception WrongDimension
let make ?x ~kind n =
let a = A.create kind Bigarray.c_layout n in
begin match x with
| None -> ()
| Some x -> A.fill a x
end;
a
let make_int n = make ~kind:Bigarray.int n
let make_char n = make ~kind:Bigarray.char n
let make_int8s n = make ~kind:Bigarray.int8_signed n
let make_int8u n = make ~kind:Bigarray.int8_unsigned n
let make_int16s n = make ~kind:Bigarray.int16_signed n
let make_int16u n = make ~kind:Bigarray.int16_unsigned n
let make_int32 n = make ~kind:Bigarray.int32 n
let make_int64 n = make ~kind:Bigarray.int64 n
let make_native n = make ~kind:Bigarray.nativeint n
let make_float32 n = make ~kind:Bigarray.float32 n
let make_float64 n = make ~kind:Bigarray.float64 n
let make_complex32 n = make ~kind:Bigarray.complex32 n
let make_complex64 n = make ~kind:Bigarray.complex64 n
let init ~kind ~f n =
let a = A.create kind Bigarray.c_layout n in
for i = 0 to n-1 do
A.unsafe_set a i (f i)
done;
a
let of_array a = a
let to_array a = a
let ro (t : ('a,'b,[>`R]) t) : ('a,'b,[`R]) t = t
let wo (t : ('a,'b,[>`W]) t) : ('a,'b,[`W]) t = t
let fill = A.fill
let copy a =
let b = make ~kind:(A.kind a) (A.dim a) in
A.blit a b;
b
let length a = A.dim a
let set = A.set
let get = A.get
let blit = A.blit
let sub = A.sub
let iter ~f a =
for i = 0 to A.dim a - 1 do
f (A.unsafe_get a i)
done
exception LocalExit
let for_all ~f a =
try
for i = 0 to A.dim a - 1 do
if not (f (A.unsafe_get a i)) then raise LocalExit
done;
true
with LocalExit -> false
let exists ~f a =
try
for i = 0 to A.dim a - 1 do
if f (A.unsafe_get a i) then raise LocalExit
done;
false
with LocalExit -> true
let iteri ~f a =
for i = 0 to A.dim a - 1 do
f i (A.unsafe_get a i)
done
let foldi f acc a =
let rec fold' f acc a i =
if i = A.dim a then acc
else
let acc = f acc i (A.unsafe_get a i) in
fold' f acc a (i+1)
in
fold' f acc a 0
let pp pp_x out a =
Format.pp_print_char out '[';
iteri a
~f:(fun i x ->
if i > 0 then Format.fprintf out ",@ ";
pp_x out x
);
Format.pp_print_char out ']';
()
module Bool = struct
type ('a, 'perm) t = (int, 'a, 'perm) array_
let set a i x = A.set a i (if x then 1 else 0)
let get a i = A.get a i <> 0
let zeroes n = make ~x:0 ~kind:Bigarray.int8_unsigned n
let ones n = make ~x:1 ~kind:Bigarray.int8_unsigned n
let iter_zeroes ~f a =
for i = 0 to A.dim a - 1 do
if A.unsafe_get a i = 0 then f i
done
let iter_ones ~f a =
for i = 0 to A.dim a - 1 do
if A.unsafe_get a i > 0 then f i
done
let cardinal a =
let rec fold a i acc =
if i = A.dim a then acc
else
let acc = if A.get a i <> 0 then acc+1 else acc in
fold a (i+1) acc
in
fold a 0 0
let or_ ?res a b =
let res = match res with
| Some r ->
if A.dim r <> max (A.dim a) (A.dim b) then raise WrongDimension;
A.fill r 0;
r
| None -> make ~x:0 ~kind:(A.kind a) (max (A.dim a) (A.dim b))
in
(* ensure [a] is no longer than [b] *)
let a, b = if A.dim a < A.dim b then a, b else b, a in
for i = 0 to A.dim a - 1 do
if A.unsafe_get a i > 0 || A.unsafe_get b i > 0
then set b i true
done;
res
let and_ ?res a b =
let res = match res with
| Some r ->
if A.dim r <> max (A.dim a) (A.dim b) then raise WrongDimension;
A.fill r 0;
r
| None -> make ~x:0 ~kind:(A.kind a) (max (A.dim a) (A.dim b))
in
(* ensure [a] is no longer than [b] *)
let a, b = if A.dim a < A.dim b then a, b else b, a in
for i=0 to A.dim a - 1 do
if A.unsafe_get a i > 0 && A.unsafe_get b i > 0
then set res i true
done;
res
let not_ ?res a =
let res = match res with
| Some r ->
if A.dim r <> A.dim a then raise WrongDimension;
A.fill r 0;
r
| None -> make ~x:0 ~kind:(A.kind a) (A.dim a)
in
for i=0 to A.dim a - 1 do
if A.unsafe_get a i = 0 then set res i true
done;
res
(* assumes dimensions are ok and [A.dim a >= A.dim b] *)
let mix_ a b ~res =
let na = A.dim a
and nb = A.dim b in
assert (nb <= na);
(* a has more bits, and we group them in successive chunks of size [d] *)
let step = 1 + (na + nb) / nb in
for i = 0 to na + nb - 1 do
let q, r = i / step, i mod step in
if r = 0
then set res i (get b q)
else set res i (get a (q + r - 1))
done
let mix ?res a b =
let res = match res with
| Some r ->
if A.dim a + A.dim b <> A.dim r then raise WrongDimension;
r
| None -> make ~kind:(A.kind a) (A.dim a + A.dim b)
in
if A.dim a < A.dim b then mix_ b a ~res else mix_ a b ~res;
res
let rec big_or_ a b i j acc =
if j = A.dim b then acc
else (* acc xor (a[i+j] and b[j]) *)
let acc = acc <> (get a ((i+j) mod A.dim a) && get b j) in
big_or_ a b i (j+1) acc
(* [into[i] = big_or_{j in [0...nb-1]} (a[i+j-1 mod na] and b[j]) *)
let convolution ?res a ~by:b =
let res = match res with
| Some r ->
if A.dim a < A.dim b || A.dim a <> A.dim r then raise WrongDimension;
r
| None -> make ~kind:(A.kind a) (A.dim a)
in
for i = 0 to A.dim res - 1 do
if big_or_ a b i 0 false then set res i true
done;
res
let pp out a = pp
(fun oc b ->
Format.pp_print_char oc (if b>0 then '1' else '0')
) out a
end
let append ?res a b =
let res = match res with
| Some r ->
if A.dim a + A.dim b <> A.dim r then raise WrongDimension;
r
| None -> make ~kind:(A.kind a) (A.dim a + A.dim b)
in
let n = A.dim a in
A.blit a (A.sub res 0 n);
A.blit b (A.sub res n (A.dim b));
res
let map ?res ~f a =
let res = match res with
| Some r ->
if A.dim a <> A.dim r then raise WrongDimension;
r
| None -> make ~kind:(A.kind a) (A.dim a)
in
for i=0 to A.dim a - 1 do
A.set res i (f (A.unsafe_get a i))
done;
res
let map2 ?res ~f a b =
if A.dim a <> A.dim b then raise WrongDimension;
let res = match res with
| Some r ->
if A.dim r <> A.dim a then raise WrongDimension;
r
| None -> make ~kind:(A.kind a) (A.dim a)
in
for i=0 to A.dim a - 1 do
A.set res i (f (A.unsafe_get a i) (A.unsafe_get b i))
done;
res
let filter ?res ~f a =
let res = match res with
| Some r ->
if A.dim a <> A.dim r then raise WrongDimension;
r
| None -> make ~x:0 ~kind:Bigarray.int8_unsigned (A.dim a)
in
for i=0 to A.dim a - 1 do
if f (A.unsafe_get a i)
then Bool.set res i true
done;
res
module type S = sig
type elt
type ('a, 'perm) t = (elt, 'a, 'perm) array_
val add :
?res:('a, [>`W] as 'perm) t ->
('a, [>`R]) t ->
('a, [>`R]) t ->
('a, 'perm) t
(** Elementwise sum
@raise WrongDimension if dimensions do not fit *)
val mult :
?res:('a, [>`W] as 'perm) t ->
('a, [>`R]) t ->
('a, [>`R]) t ->
('a, 'perm) t
(** Elementwise product *)
val scalar_add :
?res:('a, [>`W] as 'perm) t ->
('a, [>`R]) t ->
x:elt ->
('a, 'perm) t
(** @raise WrongDimension if dimensions do not fit *)
val scalar_mult :
?res:('a, [>`W] as 'perm) t ->
('a, [>`R]) t ->
x:elt ->
('a, 'perm) t
(** @raise WrongDimension if dimensions do not fit *)
val sum_elt : (_, [>`R]) t -> elt
(** Efficient sum of elements *)
val product_elt : (_, [>`R]) t -> elt
(** Efficient product of elements *)
val dot_product : (_, [>`R]) t -> (_, [>`R]) t -> elt
(** [dot_product a b] returns [sum_i a(i)*b(i)] with the given
sum and product, on [elt].
[dot_product a b = sum_elt (product a b)]
@raise WrongDimension if [a] and [b] do not have the same size *)
module Infix : sig
val ( * ) : ('a, [>`R]) t -> ('a, [>`R]) t -> ('a, 'perm) t
(** Alias to {!mult} *)
val ( + ) : ('a, [>`R]) t -> (_, [>`R]) t -> ('a, 'perm) t
(** Alias to {!add} *)
val ( *! ) : ('a, [>`R]) t -> elt -> ('a, 'perm) t
(** Alias to {!scalar_mult} *)
val ( +! ) : ('a, [>`R]) t -> elt -> ('a, 'perm) t
(** Alias to {!scalar_add} *)
end
include module type of Infix
end
module Int = struct
type elt = int
type ('a, 'perm) t = (elt, 'a, 'perm) array_
let add ?res a b =
if A.dim a <> A.dim b then raise WrongDimension;
let res = match res with
| Some r ->
if A.dim a <> A.dim r then raise WrongDimension;
r
| None -> make ~x:0 ~kind:(A.kind a) (A.dim a)
in
for i = 0 to A.dim a - 1 do
A.set res i (A.unsafe_get a i + A.unsafe_get b i)
done;
res
let mult ?res a b =
if A.dim a <> A.dim b then raise WrongDimension;
let res = match res with
| Some r ->
if A.dim a <> A.dim r then raise WrongDimension;
r
| None -> make ~x:0 ~kind:(A.kind a) (A.dim a)
in
for i = 0 to A.dim a - 1 do
A.set res i (A.unsafe_get a i * A.unsafe_get b i)
done;
res
let scalar_add ?res a ~x =
let res = match res with
| Some r ->
if A.dim a <> A.dim r then raise WrongDimension;
r
| None -> make ~x:0 ~kind:(A.kind a) (A.dim a)
in
for i = 0 to A.dim a - 1 do
A.set res i (A.unsafe_get a i + x)
done;
res
let scalar_mult ?res a ~x =
let res = match res with
| Some r ->
if A.dim a <> A.dim r then raise WrongDimension;
r
| None -> make ~x:0 ~kind:(A.kind a) (A.dim a)
in
for i = 0 to A.dim a - 1 do
A.set res i (A.unsafe_get a i * x)
done;
res
let dot_product a b =
if A.dim a <> A.dim b then raise WrongDimension;
let r = ref 0 in
for i = 0 to A.dim a - 1 do
r := !r + (A.unsafe_get a i * A.unsafe_get b i)
done;
!r
let sum_elt a =
let r = ref 0 in
for i = 0 to A.dim a - 1 do
r := !r + A.unsafe_get a i
done;
!r
let product_elt a =
let r = ref 1 in
for i = 0 to A.dim a - 1 do
r := !r * A.unsafe_get a i
done;
!r
module Infix = struct
let ( + ) a b = add a b
let ( * ) a b = mult a b
let ( +! ) a x = scalar_add a ~x
let ( *! ) a x = scalar_mult a ~x
end
include Infix
end
module Float = struct
type elt = float
type ('a, 'perm) t = (elt, 'a, 'perm) array_
let add ?res a b =
if A.dim a <> A.dim b then raise WrongDimension;
let res = match res with
| Some r ->
if A.dim a <> A.dim r then raise WrongDimension;
r
| None -> make ~x:0. ~kind:(A.kind a) (A.dim a)
in
for i = 0 to A.dim a - 1 do
A.set res i (A.unsafe_get a i +. A.unsafe_get b i)
done;
res
let mult ?res a b =
if A.dim a <> A.dim b then raise WrongDimension;
let res = match res with
| Some r ->
if A.dim a <> A.dim r then raise WrongDimension;
r
| None -> make ~x:0. ~kind:(A.kind a) (A.dim a)
in
for i = 0 to A.dim a - 1 do
A.set res i (A.unsafe_get a i *. A.unsafe_get b i)
done;
res
let scalar_add ?res a ~x =
let res = match res with
| Some r ->
if A.dim a <> A.dim r then raise WrongDimension;
r
| None -> make ~x:0. ~kind:(A.kind a) (A.dim a)
in
for i = 0 to A.dim a - 1 do
A.set res i (A.unsafe_get a i +. x)
done;
res
let scalar_mult ?res a ~x =
let res = match res with
| Some r ->
if A.dim a <> A.dim r then raise WrongDimension;
r
| None -> make ~x:0. ~kind:(A.kind a) (A.dim a)
in
for i = 0 to A.dim a - 1 do
A.set res i (A.unsafe_get a i *. x)
done;
res
let dot_product a b =
if A.dim a <> A.dim b then raise WrongDimension;
let r = ref 0. in
for i = 0 to A.dim a - 1 do
r := !r +. (A.unsafe_get a i *. A.unsafe_get b i)
done;
!r
let sum_elt a =
let r = ref 0. in
for i = 0 to A.dim a - 1 do
r := !r +. A.unsafe_get a i
done;
!r
let product_elt a =
let r = ref 1. in
for i = 0 to A.dim a - 1 do
r := !r *. A.unsafe_get a i
done;
!r
module Infix = struct
let ( + ) a b = add a b
let ( * ) a b = mult a b
let ( +! ) a x = scalar_add a ~x
let ( *! ) a x = scalar_mult a ~x
end
include Infix
end
exception OfYojsonError of string
let to_yojson (f:'a -> json) a : json =
let l = foldi (fun l _ x -> f x :: l) [] a in
`List (List.rev l)
let int_to_yojson i = `Int i
let int_of_yojson = function
| `Int i -> `Ok i
| `Float f -> `Ok (int_of_float f)
| `String s -> (try `Ok (int_of_string s) with _ -> `Error "expected int")
| _ -> `Error "expected int"
let float_to_yojson f = `Float f
let float_of_yojson = function
| `Float f -> `Ok f
| `Int i -> `Ok (float_of_int i)
| _ -> `Error "expected float"
let of_yojson
~(kind:('a,'b) Bigarray.kind)
(f: json -> 'a or_error)
(j : json) : ('a,'b,'perm) t or_error
=
let unwrap_ = function
| `Ok x -> x
| `Error msg -> raise (OfYojsonError msg)
in
let map_l l = List.map (fun x -> unwrap_ (f x)) l
and of_list l =
let a = make ~kind (List.length l) in
List.iteri (fun i b -> set a i b) l;
a
in
try
match j with
| `List l -> `Ok (of_list (map_l l))
| _ -> raise (OfYojsonError "invalid json (expected list)")
with OfYojsonError msg ->
`Error msg
module View = struct
type 'a t = {
len : int;
view : 'a view
}
and _ view =
| Arr : ('a, _, _) array_ -> 'a view
| Map : ('a -> 'b) * 'a t -> 'b view
| Map2 : ('a -> 'b -> 'c) * 'a t * 'b t -> 'c view
| Select : (int, _, _) array_ * 'a t -> 'a view
| SelectA : int array * 'a t -> 'a view
| SelectV : int t * 'a t -> 'a view
| Raw :
('a, 'b, [>`R]) array_ *
(('a, 'b, [>`R]) array_ -> int) *
(('a, 'b, [>`R]) array_ -> int -> 'a) ->
'a view
let length t = t.len
let rec get
: type a. a t -> int -> a
= fun v i -> match v.view with
| Arr a -> A.get a i
| Map (f, a) -> f (get a i)
| Map2 (f, a1, a2) -> f (get a1 i) (get a2 i)
| Select (idx, a) -> get a (A.get idx i)
| SelectA (idx, a) -> get a (Array.get idx i)
| SelectV (idx, a) -> get a (get idx i)
| Raw (a, _, f) -> f a i
let rec iteri
: type a. f:(int -> a -> unit) -> a t -> unit
= fun ~f v -> match v.view with
| Arr a ->
for i = 0 to A.dim a - 1 do
f i (A.unsafe_get a i)
done
| Map (g, a') ->
iteri a' ~f:(fun i x -> f i (g x))
| Map2 (g, a1, a2) ->
iteri a1 ~f:(fun i x -> let y = get a2 i in f i (g x y))
| Select (idx, a) ->
for i = 0 to A.dim idx - 1 do
let j = A.unsafe_get idx i in
f i (get a j)
done
| SelectA (idx, a) ->
Array.iteri (fun i j -> f i (get a j)) idx
| SelectV (idx, a) ->
for i=0 to length idx - 1 do
let j = get idx i in
f i (get a j)
done
| Raw (a, len, g) ->
for i=0 to len a - 1 do
f i (g a i)
done
let of_array a = {len=A.dim a; view=Arr a}
let map ~f a = {len=length a; view=Map(f, a)}
let map2 ~f a b =
if length a <> length b then raise WrongDimension;
{len=length a; view=Map2(f, a, b)}
let select ~idx a = {len=A.dim idx; view=Select(idx,a)}
let select_a ~idx a = {len=Array.length idx; view=SelectA(idx,a)}
let select_view ~idx a = {len=length idx; view=SelectV(idx,a)}
let fold f acc a =
let acc = ref acc in
iteri a ~f:(fun i x -> acc := f !acc i x);
!acc
let raw ~length ~get a = {len=length a; view=Raw (a, length, get) }
module type S = sig
type elt
val mult : elt t -> elt t -> elt t
val add : elt t -> elt t -> elt t
val sum : elt t -> elt
val prod : elt t -> elt
val add_scalar : elt t -> x:elt -> elt t
val mult_scalar : elt t -> x:elt -> elt t
end
module Int = struct
type elt = int
let add a b = map2 ~f:(+) a b
let mult a b = map2 ~f:( * ) a b
let sum a = fold (fun acc _ x -> acc+x) 0 a
let prod a = fold (fun acc _ x -> acc*x) 1 a
let add_scalar a ~x = map ~f:(fun y -> x+y) a
let mult_scalar a ~x = map ~f:(fun y -> x*y) a
end
module Float = struct
type elt = float
let add a b = map2 ~f:(+.) a b
let mult a b = map2 ~f:( *. ) a b
let sum a = fold (fun acc _ x -> acc+.x) 0. a
let prod a = fold (fun acc _ x -> acc*.x) 1. a
let add_scalar a ~x = map ~f:(fun y -> x+.y) a
let mult_scalar a ~x = map ~f:(fun y -> x*.y) a
end
let to_array ?res ?kind a =
let res = match res, kind with
| Some r, None ->
if A.dim r <> length a then raise WrongDimension;
r
| None, Some kind -> A.create kind Bigarray.c_layout (length a)
| None, None
| Some _, Some _ -> invalid_arg "View.to_array"
in
iteri a ~f:(fun i x -> A.unsafe_set res i x);
res
end

361
src/bigarray/CCArray1.mli Normal file
View file

@ -0,0 +1,361 @@
(*
copyright (c) 2013-2015, simon cruanes
all rights reserved.
redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with
the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*)
(** {1 Bigarrays of dimension 1 *)
(** {2 used types} *)
type 'a printer = Format.formatter -> 'a -> unit
type 'a sequence = ('a -> unit) -> unit
type 'a or_error = [`Ok of 'a | `Error of string]
type random = Random.State.t
type json = [ `Assoc of (string * json) list
| `Bool of bool
| `Float of float
| `Int of int
| `List of json list
| `Null
| `String of string ]
type 'a to_json = 'a -> json
type 'a of_json = json -> 'a or_error
(** {2 Type Declarations} *)
type ('a, 'b, 'perm) t constraint 'perm = [< `R | `W]
(** Array of OCaml values of type ['a] with C representation of type [b']
with permissions ['perm] *)
type ('a, 'b, 'perm) array_ = ('a, 'b, 'perm) t
exception WrongDimension
(** Raised when arrays do not have expected length *)
(** {2 Basic Operations} *)
val make : ?x:'a -> kind:('a,'b) Bigarray.kind -> int -> ('a, 'b, 'perm) t
(** New array with undefined elements
@param kind the kind of bigarray
@param x optional element to fill every slot
@param n the number of elements *)
val make_int : int -> (int, Bigarray.int_elt, 'perm) t
val make_char : int -> (char, Bigarray.int8_unsigned_elt, 'perm) t
val make_int8s : int -> (int, Bigarray.int8_signed_elt, 'perm) t
val make_int8u : int -> (int, Bigarray.int8_unsigned_elt, 'perm) t
val make_int16s : int -> (int, Bigarray.int16_signed_elt, 'perm) t
val make_int16u : int -> (int, Bigarray.int16_unsigned_elt, 'perm) t
val make_int32 : int -> (int32, Bigarray.int32_elt, 'perm) t
val make_int64 : int -> (int64, Bigarray.int64_elt, 'perm) t
val make_native : int -> (nativeint, Bigarray.nativeint_elt, 'perm) t
val make_float32 : int -> (float, Bigarray.float32_elt, 'perm) t
val make_float64 : int -> (float, Bigarray.float64_elt, 'perm) t
val make_complex32 : int -> (Complex.t, Bigarray.complex32_elt, 'perm) t
val make_complex64 : int -> (Complex.t, Bigarray.complex64_elt, 'perm) t
val init : kind:('a, 'b) Bigarray.kind -> f:(int -> 'a) -> int -> ('a, 'b, 'perm) t
(** Initialize with given size and initialization function *)
val of_array : ('a, 'b, Bigarray.c_layout) Bigarray.Array1.t -> ('a, 'b, 'perm) t
(** Convert from an array *)
val to_array : ('a, 'b, [`R | `W]) t -> ('a, 'b, Bigarray.c_layout) Bigarray.Array1.t
(** Obtain the underlying array *)
val ro : ('a, 'b, [>`R]) t -> ('a, 'b, [`R]) t
(** Change permission (old reference to array might still be mutable!) *)
val wo : ('a, 'b, [>`W]) t -> ('a, 'b, [`W]) t
(** Change permission *)
val length : (_, _, [>`R]) t -> int
(** Number of elements *)
val set : ('a, _, [>`W]) t -> int -> 'a -> unit
(** set n-th element *)
val get : ('a, _, [>`R]) t -> int -> 'a
(** get n-th element *)
val fill : ('a, _, [>`W]) t -> 'a -> unit
(** [fill a x] fills [a] with [x] *)
val sub : ('a, 'b, 'perm) t -> int -> int -> ('a, 'b, 'perm) t
(** [sub a i len] takes the slice of length [len] starting at offset [i] *)
val blit : ('a, 'b, [>`R]) t -> ('a, 'b, [>`W]) t -> unit
(** blit the first array to the second *)
val copy : ('a, 'b, [>`R]) t -> ('a, 'b, 'perm) t
(** Fresh copy *)
val iter : f:('a -> unit) -> ('a, _, [>`R]) t -> unit
(** [iter a ~f] calls [f v] where [get a i = v] for each [i < length a].
It iterates on all bits in increasing order *)
val iteri : f:(int -> 'a -> unit) -> ('a, _, [>`R]) t -> unit
(** [iteri a ~f] calls [f i v] where [get a i = v] for each [i < length a].
It iterates on all elements in increasing order *)
val foldi : ('b -> int -> 'a -> 'b) -> 'b -> ('a, _, [>`R]) t -> 'b
val for_all : f:('a -> bool) -> ('a, _, [>`R]) t -> bool
val exists : f:('a -> bool) -> ('a, _, [>`R]) t -> bool
val pp : 'a printer -> ('a, _, [>`R]) t printer
(** Print the SDR nicely *)
(** {2 Boolean Vectors} *)
module Bool : sig
type ('b, 'perm) t = (int, 'b, 'perm) array_
(** A simple bitvector based on some integral type ['b] *)
val get : (_, [>`R]) t -> int -> bool
val set : (_, [>`W]) t -> int -> bool -> unit
val zeroes : int -> (Bigarray.int8_unsigned_elt, 'perm) t
val ones : int -> (Bigarray.int8_unsigned_elt, 'perm) t
val iter_zeroes : f:(int -> unit) -> (_, [>`R]) t -> unit
(** [iter_ones ~f a] calls [f i] for every index [i] such that [get a i = false] *)
val iter_ones : f:(int -> unit) -> (_, [>`R]) t -> unit
(** [iter_ones ~f a] calls [f i] for every index [i] such that [get a i = true] *)
val cardinal : (_, [>`R]) t -> int
(** Number of ones *)
val pp : (_,[>`R]) t printer
(** Print the bitvector nicely *)
(** {6 Operations} *)
val or_ : ?res:('b, [>`W] as 'perm) t -> ('b, [>`R]) t -> ('b, [>`R]) t -> ('b, 'perm) t
(** [or_ a b ~into] puts the boolean "or" of [a] and [b] in [into]
expects [length into = max (length a) (length b)]
@raise WrongDimension if dimensions do not match *)
val and_ : ?res:('b, [>`W] as 'perm) t -> ('b, [>`R]) t -> ('b, [>`R]) t -> ('b, 'perm) t
(** Boolean conjunction. See {!or} for the parameters *)
val not_ : ?res:('b, [>`W] as 'perm) t -> ('b, [>`R]) t -> ('b, 'perm) t
(** Boolean negation (negation of a 0 becomes a 1) *)
val mix : ?res:('b, [>`W] as 'perm) t -> ('b, [>`R]) t -> ('b, [>`R]) t -> ('b, 'perm) t
(** [mix a b ~into] assumes [length a + length b = length into] and
mixes (interleaves) bits of [a] and [b] in [into].
@raise WrongDimension if dimensions do not match *)
val convolution : ?res:('b, [>`W] as 'perm) t -> ('b,[>`R]) t -> by:('b, [>`R]) t -> ('b,'perm) t
(** [convolution a ~by:b ~into] assumes [length into = length a >= length b]
and computes the boolean convolution of [a] by [b]
@raise WrongDimension if dimensions do not match *)
end
(** {2 Operations} *)
val map :
?res:('a, 'b, ([>`W] as 'perm)) t ->
f:('a -> 'a) ->
('a, 'b, [>`R]) t ->
('a, 'b, 'perm) t
val map2 :
?res:('a, 'b, ([>`W] as 'perm)) t ->
f:('a -> 'a2 -> 'a) ->
('a, 'b, [>`R]) t ->
('a2, _, [>`R]) t ->
('a, 'b, 'perm) t
val append :
?res:('a, 'b, ([>`W] as 'perm)) t ->
('a, 'b, [>`R]) t ->
('a, 'b, [>`R]) t ->
('a, 'b, 'perm) t
(** [append a b ~into] assumes [length a + length b = length into] and
copies [a] and [b] side by side in [into]
@raise WrongDimension if dimensions do not match *)
val filter :
?res:(Bigarray.int8_unsigned_elt, [>`W] as 'perm) Bool.t ->
f:('a -> bool) ->
('a, 'b, [>`R]) t ->
(Bigarray.int8_unsigned_elt, 'perm) Bool.t
module type S = sig
type elt
type ('a, 'perm) t = (elt, 'a, 'perm) array_
val add :
?res:('a, [>`W] as 'perm) t ->
('a, [>`R]) t ->
('a, [>`R]) t ->
('a, 'perm) t
(** Elementwise sum
@raise WrongDimension if dimensions do not fit *)
val mult :
?res:('a, [>`W] as 'perm) t ->
('a, [>`R]) t ->
('a, [>`R]) t ->
('a, 'perm) t
(** Elementwise product *)
val scalar_add :
?res:('a, [>`W] as 'perm) t ->
('a, [>`R]) t ->
x:elt ->
('a, 'perm) t
(** @raise WrongDimension if dimensions do not fit *)
val scalar_mult :
?res:('a, [>`W] as 'perm) t ->
('a, [>`R]) t ->
x:elt ->
('a, 'perm) t
(** @raise WrongDimension if dimensions do not fit *)
val sum_elt : (_, [>`R]) t -> elt
(** Efficient sum of elements *)
val product_elt : (_, [>`R]) t -> elt
(** Efficient product of elements *)
val dot_product : (_, [>`R]) t -> (_, [>`R]) t -> elt
(** [dot_product a b] returns [sum_i a(i)*b(i)] with the given
sum and product, on [elt].
[dot_product a b = sum_elt (product a b)]
@raise WrongDimension if [a] and [b] do not have the same size *)
module Infix : sig
val ( * ) : ('a, [>`R]) t -> ('a, [>`R]) t -> ('a, 'perm) t
(** Alias to {!mult} *)
val ( + ) : ('a, [>`R]) t -> (_, [>`R]) t -> ('a, 'perm) t
(** Alias to {!add} *)
val ( *! ) : ('a, [>`R]) t -> elt -> ('a, 'perm) t
(** Alias to {!scalar_mult} *)
val ( +! ) : ('a, [>`R]) t -> elt -> ('a, 'perm) t
(** Alias to {!scalar_add} *)
end
include module type of Infix
end
module Int : S with type elt = int
module Float : S with type elt = float
(** {2 Serialization} *)
val to_yojson : 'a to_json -> ('a, _, [>`R]) t to_json
val of_yojson : kind:('a, 'b) Bigarray.kind -> 'a of_json -> ('a, 'b, 'perm) t of_json
val int_to_yojson : int to_json
val int_of_yojson : int of_json
val float_to_yojson : float to_json
val float_of_yojson : float of_json
(** {2 Views} *)
module View : sig
type 'a t
(** A view on an array or part of an array *)
val of_array : ('a, _, [>`R]) array_ -> 'a t
val get : 'a t -> int -> 'a
(** [get v i] returns the [i]-th element of [v]. Caution, this is not
as cheap as a regular array indexing, and it might involve recursion.
@raise Invalid_argument if index out of bounds *)
val length : _ t -> int
(** [length v] is the number of elements of [v] *)
val map : f:('a -> 'b) -> 'a t -> 'b t
(** Map values *)
val map2 : f:('a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t
(** Map values
@raise WrongDimension if lengths do not fit *)
val select : idx:(int, _, [>`R]) array_ -> 'a t -> 'a t
(** [select ~idx v] is the view that has length [length idx]
and such that [get (select ~idx a) i = get a (get idx i)] *)
val select_a : idx:int array -> 'a t -> 'a t
(** See {!select} *)
val select_view : idx:int t -> 'a t -> 'a t
(** See {!select} *)
val fold : ('b -> int -> 'a -> 'b) -> 'b -> 'a t -> 'b
(** fold on values with their index *)
val iteri : f:(int -> 'a -> unit) -> 'a t -> unit
(** [iteri ~f v] iterates on elements of [v] with their index *)
module type S = sig
type elt
val mult : elt t -> elt t -> elt t
val add : elt t -> elt t -> elt t
val sum : elt t -> elt
val prod : elt t -> elt
val add_scalar : elt t -> x:elt -> elt t
val mult_scalar : elt t -> x:elt -> elt t
end
module Int : sig
include S with type elt = int
end
module Float : sig
include S with type elt = float
(* TODO: more, like trigo functions *)
end
val raw :
length:(('a, 'b, [>`R]) array_ -> int) ->
get:(('a, 'b, [>`R]) array_ -> int -> 'a) ->
('a, 'b, [>`R]) array_ ->
'a t
val to_array :
?res:('a, 'b, [>`W] as 'perm) array_ ->
?kind:('a, 'b) Bigarray.kind ->
'a t ->
('a, 'b, 'perm) array_
(** [to_array v] returns a fresh copy of the content of [v].
Exactly one of [res] and [kind] must be provided *)
end