immutable graphs in CCGraph.Map

This commit is contained in:
Simon Cruanes 2015-06-11 11:00:11 +02:00
parent 0475e893a1
commit 3b27a5a8cd
2 changed files with 124 additions and 0 deletions

View file

@ -631,6 +631,87 @@ let mk_mut_tbl (type k) ?(eq=(=)) ?(hash=Hashtbl.hash) size =
method remove v = Tbl.remove tbl v
end
(** {2 Immutable Graph} *)
module type MAP = sig
type vertex
type t
val as_graph : t -> (vertex, (vertex * vertex)) graph
(** Graph view of the map *)
val empty : t
val add_edge : vertex -> vertex -> t -> t
val remove_edge : vertex -> vertex -> t -> t
val remove : vertex -> t -> t
val union : t -> t -> t
val of_list : (vertex * vertex) list -> t
val to_list : t -> (vertex * vertex) list
val of_seq : (vertex * vertex) sequence -> t
val to_seq : t -> (vertex * vertex) sequence
end
module Map(O : Map.OrderedType) = struct
module M = Map.Make(O)
module S = Set.Make(O)
type vertex = O.t
type t = S.t M.t
let as_graph m = {
origin=fst;
dest=snd;
children=(fun v yield ->
try
let set = M.find v m in
S.iter (fun v' -> yield (v, v')) set
with Not_found -> ()
);
}
let empty = M.empty
let add_edge v1 v2 m =
let set = try M.find v1 m with Not_found -> S.empty in
M.add v1 (S.add v2 set) m
let remove_edge v1 v2 m =
try
let set = S.remove v2 (M.find v1 m) in
if S.is_empty set then M.remove v1 m else M.add v1 set m
with Not_found -> m
let remove = M.remove
let union m1 m2 =
M.merge
(fun v s1 s2 -> match s1, s2 with
| Some s, None
| None, Some s -> Some s
| None, None -> assert false
| Some s1, Some s2 -> Some (S.union s1 s2)
) m1 m2
let of_list l = List.fold_left (fun m (v1,v2) -> add_edge v1 v2 m) empty l
let to_list m =
M.fold
(fun v set acc -> S.fold (fun v' acc -> (v,v')::acc) set acc)
m []
let of_seq seq = Seq.fold (fun m (v1,v2) -> add_edge v1 v2 m) empty seq
let to_seq m k = M.iter (fun v set -> S.iter (fun v' -> k(v,v')) set) m
end
(** {2 Misc} *)
let of_list ?(eq=(=)) l = {
@ -639,6 +720,15 @@ let of_list ?(eq=(=)) l = {
children=(fun v yield -> List.iter (fun (a,b) -> if eq a v then yield (a,b)) l)
}
let of_fun f = {
origin=fst;
dest=snd;
children=(fun v yield ->
let l = f v in
List.iter (fun v' -> yield (v,v')) l
);
}
let of_hashtbl tbl = {
origin=fst;
dest=snd;

View file

@ -326,6 +326,36 @@ val mk_mut_tbl : ?eq:('v -> 'v -> bool) ->
('v, ('v * 'a * 'v)) mut_graph
(** make a new mutable graph from a Hashtbl. Edges are labelled with type ['a] *)
(** {2 Immutable Graph} *)
module type MAP = sig
type vertex
type t
val as_graph : t -> (vertex, (vertex * vertex)) graph
(** Graph view of the map *)
val empty : t
val add_edge : vertex -> vertex -> t -> t
val remove_edge : vertex -> vertex -> t -> t
val remove : vertex -> t -> t
val union : t -> t -> t
val of_list : (vertex * vertex) list -> t
val to_list : t -> (vertex * vertex) list
val of_seq : (vertex * vertex) sequence -> t
val to_seq : t -> (vertex * vertex) sequence
end
module Map(O : Map.OrderedType) : MAP with type vertex = O.t
(** {2 Misc} *)
val of_list : ?eq:('v -> 'v -> bool) -> ('v * 'v) list -> ('v, ('v * 'v)) t
@ -337,5 +367,9 @@ val of_hashtbl : ('v, 'v list) Hashtbl.t -> ('v, ('v * 'v)) t
(** [of_hashtbl tbl] makes a graph from a hashtable that maps vertices
to lists of children *)
val of_fun : ('v -> 'v list) -> ('v, ('v * 'v)) t
(** [of_fun f] makes a graph out of a function that maps a vertex to
the list of its children. The function is assumed to be deterministic. *)
val divisors_graph : (int, (int * int)) t
(** [n] points to all its strict divisors *)