Merge branch 'master' into stable for 1.1

This commit is contained in:
Simon Cruanes 2017-03-03 16:18:26 +01:00
commit 9fb319966b
17 changed files with 559 additions and 462 deletions

View file

@ -1,14 +1,9 @@
S src/core S src/core
S src/data/ S src/data/
S src/io
S src/iter/ S src/iter/
S src/advanced/
S src/lwt/
S src/sexp/ S src/sexp/
S src/threads/ S src/threads/
S src/misc
S src/string S src/string
S src/bigarray
S benchs S benchs
S examples S examples
S tests S tests
@ -22,8 +17,5 @@ PKG result
PKG threads PKG threads
PKG threads.posix PKG threads.posix
PKG lwt PKG lwt
PKG bigarray
PKG sequence
PKG gen
PKG qcheck PKG qcheck
FLG -w +a -w -4 -w -44 FLG -w +a -w -4 -w -44

View file

@ -1,33 +1,21 @@
#use "topfind";; #use "topfind";;
#thread #thread
#require "result";; #require "result";;
#require "bigarray";;
#require "unix";; #require "unix";;
#require "sequence";; #require "sequence";;
#directory "_build/src/core";; #directory "_build/src/core";;
#directory "_build/src/misc";;
#directory "_build/src/pervasives/";;
#directory "_build/src/string";;
#directory "_build/src/io";;
#directory "_build/src/unix";; #directory "_build/src/unix";;
#directory "_build/src/iter";; #directory "_build/src/iter";;
#directory "_build/src/data";; #directory "_build/src/data";;
#directory "_build/src/advanced/";;
#directory "_build/src/sexp";; #directory "_build/src/sexp";;
#directory "_build/src/bigarray/";;
#directory "_build/src/threads";; #directory "_build/src/threads";;
#directory "_build/src/top/";; #directory "_build/src/top/";;
#directory "_build/tests/";;
#load "containers.cma";; #load "containers.cma";;
#load "containers_iter.cma";; #load "containers_iter.cma";;
#load "containers_data.cma";; #load "containers_data.cma";;
#load "containers_advanced.cma";;
#load "containers_io.cma";;
#load "containers_unix.cma";; #load "containers_unix.cma";;
#load "containers_sexp.cma";; #load "containers_sexp.cma";;
#load "containers_string.cma";; #load "containers_string.cma";;
#load "containers_pervasives.cma";;
#load "containers_bigarray.cma";;
#load "containers_top.cma";; #load "containers_top.cma";;
#thread;; #thread;;
#load "containers_thread.cma";; #load "containers_thread.cma";;

View file

@ -1,5 +1,26 @@
= Changelog = Changelog
== 1.1
**bugfixes**:
- fix bug in `CCGraph` (in DFS traversal)
- fix bug in `CCOpt.filter` (close #100)
**new features**:
- add `CCHeap.to_seq_sorted`
- add `CCHeap.to_list_sorted`
- add `CCIO.File.walk_l`
**cleanup and doc**:
- remove dead code
- new test for `CCPool`
- new test and small readme section on `CCParse`
- remove CCError from tutorial
- merge tutorial into readme, cleanup
== 1.0 == 1.0
See https://github.com/c-cube/ocaml-containers/issues/84 for an overview. See https://github.com/c-cube/ocaml-containers/issues/84 for an overview.

View file

@ -2,11 +2,23 @@
:toc: macro :toc: macro
:source-highlighter: pygments :source-highlighter: pygments
What is _containers_? (take a look at the link:TUTORIAL.adoc[tutorial]! A modular, clean and powerful extension of the OCaml standard library.
or the http://cedeela.fr/~simon/software/containers[current documentation])
In `containers` and `containers.data`, all modules abide by Containers is an extension of OCaml's standard library (under BSD license)
_pay for what you use_: only modules that are used are linked (there are no focused on data structures, combinators and iterators, without dependencies on
cross-module dependencies). unix, str or num. Every module is independent and is prefixed with 'CC' in the
global namespace. Some modules extend the stdlib (e.g. CCList provides safe
map/fold_right/append, and additional functions on lists).
Alternatively, `open Containers` will bring enhanced versions of the standard
modules into scope.
image:https://ci.cedeela.fr/buildStatus/icon?job=containers[alt="Build Status", link="http://ci.cedeela.fr/job/containers/"]
toc::[]
== Quick Summary
Containers is:
- A usable, reasonably well-designed library that extends OCaml's standard - A usable, reasonably well-designed library that extends OCaml's standard
library (in 'src/core/', packaged under `containers` in ocamlfind. Modules library (in 'src/core/', packaged under `containers` in ocamlfind. Modules
@ -18,33 +30,26 @@ cross-module dependencies).
`Containers` (intended to be opened, replaces some stdlib modules `Containers` (intended to be opened, replaces some stdlib modules
with extended ones). with extended ones).
- Several small additional libraries that complement it: - Several small additional libraries that complement it:
* `containers.data` with additional data structures that don't have an
containers.data:: with additional data structures that don't have an
equivalent in the standard library; equivalent in the standard library;
containers.iter:: with list-like and tree-like iterators; * `containers.iter` with list-like and tree-like iterators;
- A sub-library with complicated abstractions, `containers.advanced` (with
a LINQ-like query module, batch operations using GADTs, and others).
- Utilities around the `unix` library in `containers.unix` (mainly to spawn - Utilities around the `unix` library in `containers.unix` (mainly to spawn
sub-processes) sub-processes easily and deal with resources safely)
- A lightweight S-expression printer and streaming parser in `containers.sexp` - A lightweight S-expression printer and streaming parser in `containers.sexp`
- A library for threaded programming in `containers.thread`,
including a blocking queue, semaphores, an extension of `Mutex`, and
thread-pool based futures.
Some of the modules have been moved to their own repository (e.g. `sequence`, Some of the modules have been moved to their own repository (e.g. `sequence`,
`gen`, `qcheck`) and are on opam for great fun and profit. `gen`, `qcheck`) and are on opam for great fun and profit.
image:https://ci.cedeela.fr/buildStatus/icon?job=containers[alt="Build Status", link="http://ci.cedeela.fr/job/containers/"]
toc::[]
image::media/logo.png[logo]
== Change Log == Change Log
See link:CHANGELOG.adoc[this file]. See link:CHANGELOG.adoc[this file].
== Finding help == Finding help
- *new*: http://lists.ocaml.org/listinfo/containers-users[Mailing List] - http://lists.ocaml.org/listinfo/containers-users[Mailing List]
the address is mailto:containers-users@lists.ocaml.org[] the address is mailto:containers-users@lists.ocaml.org[]
- the https://github.com/c-cube/ocaml-containers/wiki[github wiki] - the https://github.com/c-cube/ocaml-containers/wiki[github wiki]
- on IRC, ask `companion_cube` on `#ocaml@freenode.net` - on IRC, ask `companion_cube` on `#ocaml@freenode.net`
@ -52,7 +57,7 @@ See link:CHANGELOG.adoc[this file].
== Use == Use
Start with the link:TUTORIAL.adoc[tutorial] You might start with the <<tutorial>> to get a picture of how to use the library.
You can either build and install the library (see <<build>>), or just copy You can either build and install the library (see <<build>>), or just copy
files to your own project. The last solution has the benefits that you files to your own project. The last solution has the benefits that you
@ -79,141 +84,29 @@ If you have comments, requests, or bugfixes, please share them! :-)
This code is free, under the BSD license. This code is free, under the BSD license.
The logo (`media/logo.png`) is
CC-SA3 http://en.wikipedia.org/wiki/File:Hypercube.svg[wikimedia].
== Contents == Contents
The library contains a <<core,Core part>> that mostly extends the stdlib See http://c-cube.github.io/ocaml-containers/[the documentation]
and adds a few very common structures (heap, vector), and sub-libraries and <<tutorial,the tutorial below>> for a gentle introduction.
that deal with either more specific things, or require additional dependencies.
Some structural types are used throughout the library:
gen:: `'a gen = unit -> 'a option` is an iterator type. Many combinators
are defined in the opam library https://github.com/c-cube/gen[gen]
sequence:: `'a sequence = (unit -> 'a) -> unit` is also an iterator type.
It is easier to define on data structures than `gen`, but it a bit less
powerful. The opam library https://github.com/c-cube/sequence[sequence]
can be used to consume and produce values of this type.
error:: (DEPRECATED) `'a or_error = [`Error of string | `Ok of 'a]` is a error type
that is used in other libraries, too. It is now deprecated and
replaced with `('a, string) Result.result`, supported in
`CCResult`.
klist:: `'a klist = unit -> [`Nil | `Cons of 'a * 'a klist]` is a lazy list
without memoization, used as a persistent iterator. The reference
module is `CCKList` (in `containers.iter`).
printer:: `'a printer = Format.formatter -> 'a -> unit` is a pretty-printer
to be used with the standard module `Format`. In particular, in many cases,
`"foo: %a" Foo.print foo` will type-check.
[[core]]
=== Core Modules (extension of the standard library)
the core library, `containers`, now depends on
https://github.com/mjambon/cppo[cppo] and `base-bytes` (provided
by ocamlfind).
Documentation http://cedeela.fr/~simon/software/containers[here].
- `CCHeap`, a purely functional heap structure
- `CCVector`, a growable array (pure OCaml, no C) with mutability annotations
- `CCList`, functions on lists, including tail-recursive implementations of `map` and `append` and many other things
- `CCArray`, utilities on arrays
- `CCArray_slice`, array slices
- `CCHashtbl`, `CCMap` extensions of the standard modules `Hashtbl` and `Map`
- `CCInt`
- `CCString` (basic string operations)
- `CCPair` (cartesian products)
- `CCOpt` (options, very useful)
- `CCFun` (function combinators)
- `CCBool`
- `CCFloat`
- `CCOrd` (combinators for total orderings)
- `CCRandom` (combinators for random generators)
- `CCHash` (hashing combinators)
- `CCResult` (monadic error handling, very useful)
- `CCIO`, basic utilities for IO (channels, files)
- `CCInt64,` utils for `int64`
- `CCChar`, utils for `char`
- `CCFormat`, pretty-printing utils around `Format`
=== Containers.data
- `CCBitField`, bitfields embedded in integers
- `CCCache`, memoization caches, LRU, etc.
- `CCFlatHashtbl`, a flat (open-addressing) hashtable functorial implementation
- `CCTrie`, a prefix tree
- `CCHashTrie`, a map where keys are hashed and put in a trie by hash
- `CCMultimap` and `CCMultiset`, functors defining persistent structures
- `CCFQueue`, a purely functional double-ended queue structure
- `CCBV`, mutable bitvectors
- `CCHashSet`, mutable set
- `CCPersistentHashtbl` and `CCPersistentArray`, a semi-persistent array and hashtable
(similar to https://www.lri.fr/~filliatr/ftp/ocaml/ds/parray.ml.html[persistent arrays])
- `CCMixmap`, `CCMixtbl`, `CCMixset`, containers of universal types (heterogenous containers)
- `CCRingBuffer`, a double-ended queue on top of an array-like structure,
with batch operations
- `CCIntMap`, map specialized for integer keys based on Patricia Trees,
with fast merges
- `CCGraph`, a small collection of graph algorithms
- `CCBitField`, a type-safe implementation of bitfields that fit in `int`
- `CCWBTree`, a weight-balanced tree, implementing a map interface
- `CCRAL`, a random-access list structure, with `O(1)` cons/hd/tl and `O(ln(n))`
access to elements by their index.
- `CCImmutArray`, immutable interface to arrays
=== Containers.unix
- `CCUnix`, utils for `Unix`
=== Containers.sexp
A small S-expression library.
- `CCSexp`, a small S-expression library
=== Containers.iter
Iterators:
- `CCKList`, a persistent iterator structure (akin to a lazy list, without memoization)
- `CCKTree`, an abstract lazy tree structure
=== Thread
In the library `containers.thread`, for preemptive system threads:
- `CCFuture`, a set of tools for preemptive threading, including a thread pool,
monadic futures, and MVars (concurrent boxes)
- `CCLock`, values protected by locks
- `CCSemaphore`, a simple implementation of semaphores
- `CCThread` basic wrappers for `Thread`
=== Misc
The library has moved to https://github.com/c-cube/containers-misc .
=== Others
`containers.lwt` has moved to https://github.com/c-cube/containers-lwt .
[[build]]
== Documentation == Documentation
In general, see http://c-cube.github.io/ocaml-containers/ or In general, see http://c-cube.github.io/ocaml-containers/ or
http://cedeela.fr/~simon/software/containers http://cedeela.fr/~simon/software/containers for the **API documentation**.
by version: Some examples can be found link:doc/containers.adoc[there].
API documentation by version:
- http://c-cube.github.io/ocaml-containers/dev/[dev branch] - http://c-cube.github.io/ocaml-containers/dev/[dev branch]
- http://c-cube.github.io/ocaml-containers/0.17/[0.17] - http://c-cube.github.io/ocaml-containers/1.0/[1.0]
- http://c-cube.github.io/ocaml-containers/0.19/[0.19] - http://c-cube.github.io/ocaml-containers/0.19/[0.19]
- http://c-cube.github.io/ocaml-containers/0.17/[0.17]
[[build]]
== Build == Build
You will need OCaml `>=` 4.00.0. You will need OCaml `>=` 4.01.0.
=== Via opam === Via opam
@ -251,3 +144,297 @@ A few guidelines:
- add tests if possible (using `qtest`). - add tests if possible (using `qtest`).
Powered by image:http://oasis.forge.ocamlcore.org/oasis-badge.png[alt="OASIS", style="border: none;", link="http://oasis.forge.ocamlcore.org/"] Powered by image:http://oasis.forge.ocamlcore.org/oasis-badge.png[alt="OASIS", style="border: none;", link="http://oasis.forge.ocamlcore.org/"]
[[tutorial]]
== Tutorial
This tutorial contains a few examples to illustrate the features and
usage of containers. We assume containers is installed and that
the library is loaded, e.g. with:
[source,OCaml]
----
#require "containers";;
----
=== Basics
We will start with a few list helpers, then look at other parts of
the library, including printers, maps, etc.
[source,OCaml]
----
(* quick reminder of this awesome standard operator *)
# (|>) ;;
- : 'a -> ('a -> 'b) -> 'b = <fun>
# open CCList.Infix;;
# let l = 1 -- 100;;
val l : int list = [1; 2; .....]
# l
|> CCList.filter_map
(fun x-> if x mod 3=0 then Some (float x) else None)
|> CCList.take 5 ;;
- : float list = [3.; 6.; 9.; 12.; 15.]
# let l2 = l |> CCList.take_while (fun x -> x<10) ;;
val l2 : int list = [1; 2; 3; 4; 5; 6; 7; 8; 9]
(* an extension of Map.Make, compatible with Map.Make(CCInt) *)
# module IntMap = CCMap.Make(CCInt);;
(* conversions using the "sequence" type, fast iterators that are
pervasively used in containers. Combinators can be found
in the opam library "sequence". *)
# let map =
l2
|> List.map (fun x -> x, string_of_int x)
|> CCList.to_seq
|> IntMap.of_seq;;
val map : string CCIntMap.t = <abstr>
(* check the type *)
# CCList.to_seq ;;
- : 'a list -> 'a sequence = <fun>
# IntMap.of_seq ;;
- : (int * 'a) CCMap.sequence -> 'a IntMap.t = <fun>
(* we can print, too *)
# Format.printf "@[<2>map =@ @[<hov>%a@]@]@."
(IntMap.print CCFormat.int CCFormat.string_quoted)
map;;
map =
[1 --> "1", 2 --> "2", 3 --> "3", 4 --> "4", 5 --> "5", 6 --> "6",
7 --> "7", 8 --> "8", 9 --> "9"]
- : unit = ()
(* options are good *)
# IntMap.get 3 map |> CCOpt.map (fun s->s ^ s);;
- : string option = Some "33"
----
=== New types: `CCVector`, `CCHeap`, `CCResult`
Containers also contains (!) a few datatypes that are not from the standard
library but that are useful in a lot of situations:
CCVector::
A resizable array, with a mutability parameter. A value of type
`('a, CCVector.ro) CCVector.t` is an immutable vector of values of type `'a`,
whereas a `('a, CCVector.rw) CCVector.t` is a mutable vector that
can be modified. This way, vectors can be used in a quite functional
way, using operations such as `map` or `flat_map`, or in a more
imperative way.
CCHeap::
A priority queue (currently, leftist heaps) functorized over
a module `sig val t val leq : t -> t -> bool` that provides a type `t`
and a partial order `leq` on `t`.
CCResult::
An error type for making error handling more explicit (an error monad,
really, if you're not afraid of the "M"-word).
Subsumes and replaces the old `CCError`.
It uses the new `result` type from the standard library (or from
the retrocompatibility package on opam) and provides
many combinators for dealing with `result`.
Now for a few examples:
[source,OCaml]
----
(* create a new empty vector. It is mutable, for otherwise it would
not be very useful. *)
# CCVector.create;;
- : unit -> ('a, CCVector.rw) CCVector.t = <fun>
(* init, similar to Array.init, can be used to produce a
vector that is mutable OR immutable (see the 'mut parameter?) *)
# CCVector.init ;;
- : int -> (int -> 'a) -> ('a, 'mut) CCVector.t = <fun>c
(* use the infix (--) operator for creating a range. Notice
that v is a vector of integer but its mutability is not
decided yet. *)
# let v = CCVector.(1 -- 10);;
val v : (int, '_a) CCVector.t = <abstr>
# Format.printf "v = @[%a@]@." (CCVector.print CCInt.print) v;;
v = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
(* now let's mutate v *)
# CCVector.push v 42;;
- : unit = ()
(* now v is a mutable vector *)
# v;;
- : (int, CCVector.rw) CCVector.t = <abstr>
(* functional combinators! *)
# let v2 = v
|> CCVector.map (fun x-> x+1)
|> CCVector.filter (fun x-> x mod 2=0)
|> CCVector.rev ;;
val v2 : (int, '_a) CCVector.t = <abstr>
# Format.printf "v2 = @[%a@]@." (CCVector.print CCInt.print) v2;;
v2 = [10, 8, 6, 4, 2]
(* let's transfer to a heap *)
# module IntHeap = CCHeap.Make(struct type t = int let leq = (<=) end);;
# let h = v2 |> CCVector.to_seq |> IntHeap.of_seq ;;
val h : IntHeap.t = <abstr>
(* We can print the content of h
(printing is not necessarily in order, though) *)
# Format.printf "h = [@[%a@]]@." (IntHeap.print CCInt.print) h;;
h = [2,4,6,8,10]
(* we can remove the first element, which also returns a new heap
that does not contain it — CCHeap is a functional data structure *)
# IntHeap.take h;;
- : (IntHeap.t * int) option = Some (<abstr>, 2)
# let h', x = IntHeap.take_exn h ;;
val h' : IntHeap.t = <abstr>
val x : int = 2
(* see, 2 is removed *)
# IntHeap.to_list h' ;;
- : int list = [4; 6; 8; 10]
----
=== IO helpers
The core library contains a module called `CCIO` that provides useful
functions for reading and writing files. It provides functions that
make resource handling easy, following
the pattern `with_resource : resource -> (access -> 'a) -> 'a` where
the type `access` is a temporary handle to the resource (e.g.,
imagine `resource` is a file name and `access` a file descriptor).
Calling `with_resource r f` will access `r`, give the result to `f`,
compute the result of `f` and, whether `f` succeeds or raises an
error, it will free the resource.
Consider for instance:
[source,OCaml]
----
# CCIO.with_out "/tmp/foobar"
(fun out_channel ->
CCIO.write_lines_l out_channel ["hello"; "world"]);;
- : unit = ()
----
This just opened the file '/tmp/foobar', creating it if it didn't exist,
and wrote two lines in it. We did not have to close the file descriptor
because `with_out` took care of it. By the way, the type signatures are:
[source,OCaml]
----
val with_out :
?mode:int -> ?flags:open_flag list ->
string -> (out_channel -> 'a) -> 'a
val write_lines_l : out_channel -> string list -> unit
----
So we see the pattern for `with_out` (which opens a function in write
mode and gives its functional argument the corresponding file descriptor).
NOTE: you should never let the resource escape the
scope of the `with_resource` call, because it will not be valid outside.
OCaml's type system doesn't make it easy to forbid that so we rely
on convention here (it would be possible, but cumbersome, using
a record with an explicitely quantified function type).
Now we can read the file again:
[source,OCaml]
----
# let lines = CCIO.with_in "/tmp/foobar" CCIO.read_lines_l ;;
val lines : string list = ["hello"; "world"]
----
There are some other functions in `CCIO` that return _generators_
instead of lists. The type of generators in containers
is `type 'a gen = unit -> 'a option` (combinators can be
found in the opam library called "gen"). A generator is to be called
to obtain successive values, until it returns `None` (which means it
has been exhausted). In particular, python users might recognize
the function
[source,OCaml]
----
# CCIO.File.walk ;;
- : string -> walk_item gen = <fun>;;
----
where `type walk_item = [ `Dir | `File ] * string` is a path
paired with a flag distinguishing files from directories.
=== To go further: containers.data
There is also a sub-library called `containers.data`, with lots of
more specialized data-structures.
The documentation contains the API for all the modules
(see link:README.adoc[the readme]); they also provide
interface to `sequence` and, as the rest of containers, minimize
dependencies over other modules. To use `containers.data` you need to link it,
either in your build system or by `#require containers.data;;`
A quick example based on purely functional double-ended queues:
[source,OCaml]
----
# #require "containers.data";;
# #install_printer CCFQueue.print;; (* better printing of queues! *)
# let q = CCFQueue.of_list [2;3;4] ;;
val q : int CCFQueue.t = queue {2; 3; 4}
# let q2 = q |> CCFQueue.cons 1 |> CCFQueue.cons 0 ;;
val q2 : int CCFQueue.t = queue {0; 1; 2; 3; 4}
(* remove first element *)
# CCFQueue.take_front q2;;
- : (int * int CCFQueue.t) option = Some (0, queue {1; 2; 3; 4})
(* q was not changed *)
# CCFQueue.take_front q;;
- : (int * int CCFQueue.t) option = Some (2, queue {3; 4})
(* take works on both ends of the queue *)
# CCFQueue.take_back_l 2 q2;;
- : int CCFQueue.t * int list = (queue {0; 1; 2}, [3; 4])
----
=== Common Type Definitions
Some structural types are used throughout the library:
gen:: `'a gen = unit -> 'a option` is an iterator type. Many combinators
are defined in the opam library https://github.com/c-cube/gen[gen]
sequence:: `'a sequence = (unit -> 'a) -> unit` is also an iterator type.
It is easier to define on data structures than `gen`, but it a bit less
powerful. The opam library https://github.com/c-cube/sequence[sequence]
can be used to consume and produce values of this type.
error:: `'a or_error = ('a, string) result = Error of string | Ok of 'a`
using the standard `result` type, supported in `CCResult`.
klist:: `'a klist = unit -> [`Nil | `Cons of 'a * 'a klist]` is a lazy list
without memoization, used as a persistent iterator. The reference
module is `CCKList` (in `containers.iter`).
printer:: `'a printer = Format.formatter -> 'a -> unit` is a pretty-printer
to be used with the standard module `Format`. In particular, in many cases,
`"foo: %a" Foo.print foo` will type-check.
=== Extended Documentation
See link:doc/containers.adoc[the extended documentation] for more examples.

View file

@ -1,275 +0,0 @@
= Tutorial
:source-highlighter: pygments
This tutorial contains a few examples to illustrate the features and
usage of containers. We assume containers is installed and that
the library is loaded, e.g. with:
[source,OCaml]
----
#require "containers";;
----
== Basics
We will start with a few list helpers, then look at other parts of
the library, including printers, maps, etc.
[source,OCaml]
----
(* quick reminder of this awesome standard operator *)
# (|>) ;;
- : 'a -> ('a -> 'b) -> 'b = <fun>
# open CCList.Infix;;
# let l = 1 -- 100;;
val l : int list = [1; 2; .....]
# l
|> CCList.filter_map
(fun x-> if x mod 3=0 then Some (float x) else None)
|> CCList.take 5 ;;
- : float list = [3.; 6.; 9.; 12.; 15.]
# let l2 = l |> CCList.take_while (fun x -> x<10) ;;
val l2 : int list = [1; 2; 3; 4; 5; 6; 7; 8; 9]
(* an extension of Map.Make, compatible with Map.Make(CCInt) *)
# module IntMap = CCMap.Make(CCInt);;
(* conversions using the "sequence" type, fast iterators that are
pervasively used in containers. Combinators can be found
in the opam library "sequence". *)
# let map =
l2
|> List.map (fun x -> x, string_of_int x)
|> CCList.to_seq
|> IntMap.of_seq;;
val map : string CCIntMap.t = <abstr>
(* check the type *)
# CCList.to_seq ;;
- : 'a list -> 'a sequence = <fun>
# IntMap.of_seq ;;
- : (int * 'a) CCMap.sequence -> 'a IntMap.t = <fun>
(* we can print, too *)
# Format.printf "@[<2>map =@ @[<hov>%a@]@]@."
(IntMap.print CCFormat.int CCFormat.string_quoted)
map;;
map =
[1 --> "1", 2 --> "2", 3 --> "3", 4 --> "4", 5 --> "5", 6 --> "6",
7 --> "7", 8 --> "8", 9 --> "9"]
- : unit = ()
(* options are good *)
# IntMap.get 3 map |> CCOpt.map (fun s->s ^ s);;
- : string option = Some "33"
----
== New types: `CCVector`, `CCHeap`, `CCError`, `CCResult`
Containers also contains (!) a few datatypes that are not from the standard
library but that are useful in a lot of situations:
CCVector::
A resizable array, with a mutability parameter. A value of type
`('a, CCVector.ro) CCVector.t` is an immutable vector of values of type `'a`,
whereas a `('a, CCVector.rw) CCVector.t` is a mutable vector that
can be modified. This way, vectors can be used in a quite functional
way, using operations such as `map` or `flat_map`, or in a more
imperative way.
CCHeap::
A priority queue (currently, leftist heaps) functorized over
a module `sig val t val leq : t -> t -> bool` that provides a type `t`
and a partial order `leq` on `t`.
CCError::
An error type for making error handling more explicit (an error monad,
really, if you're not afraid of the "M"-word). It is similar to the
more recent `CCResult`, but works with polymorphic variants for
compatibility with the numerous libraries that use the same type,
that is, `type ('a, 'b) CCError.t = [`Ok of 'a | `Error of 'b]`.
CCResult::
It uses the new `result` type from the standard library (or from
the retrocompatibility package on opam), and presents an interface
similar to `CCError`. In an indeterminate amount of time, it will
totally replace `CCError`.
Now for a few examples:
[source,OCaml]
----
(* create a new empty vector. It is mutable, for otherwise it would
not be very useful. *)
# CCVector.create;;
- : unit -> ('a, CCVector.rw) CCVector.t = <fun>
(* init, similar to Array.init, can be used to produce a
vector that is mutable OR immutable (see the 'mut parameter?) *)
# CCVector.init ;;
- : int -> (int -> 'a) -> ('a, 'mut) CCVector.t = <fun>c
(* use the infix (--) operator for creating a range. Notice
that v is a vector of integer but its mutability is not
decided yet. *)
# let v = CCVector.(1 -- 10);;
val v : (int, '_a) CCVector.t = <abstr>
# Format.printf "v = @[%a@]@." (CCVector.print CCInt.print) v;;
v = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
(* now let's mutate v *)
# CCVector.push v 42;;
- : unit = ()
(* now v is a mutable vector *)
# v;;
- : (int, CCVector.rw) CCVector.t = <abstr>
(* functional combinators! *)
# let v2 = v
|> CCVector.map (fun x-> x+1)
|> CCVector.filter (fun x-> x mod 2=0)
|> CCVector.rev ;;
val v2 : (int, '_a) CCVector.t = <abstr>
# Format.printf "v2 = @[%a@]@." (CCVector.print CCInt.print) v2;;
v2 = [10, 8, 6, 4, 2]
(* let's transfer to a heap *)
# module IntHeap = CCHeap.Make(struct type t = int let leq = (<=) end);;
# let h = v2 |> CCVector.to_seq |> IntHeap.of_seq ;;
val h : IntHeap.t = <abstr>
(* We can print the content of h
(printing is not necessarily in order, though) *)
# Format.printf "h = [@[%a@]]@." (IntHeap.print CCInt.print) h;;
h = [2,4,6,8,10]
(* we can remove the first element, which also returns a new heap
that does not contain it — CCHeap is a functional data structure *)
# IntHeap.take h;;
- : (IntHeap.t * int) option = Some (<abstr>, 2)
# let h', x = IntHeap.take_exn h ;;
val h' : IntHeap.t = <abstr>
val x : int = 2
(* see, 2 is removed *)
# IntHeap.to_list h' ;;
- : int list = [4; 6; 8; 10]
----
== IO helpers
The core library contains a module called `CCIO` that provides useful
functions for reading and writing files. It provides functions that
make resource handling easy, following
the pattern `with_resource : resource -> (access -> 'a) -> 'a` where
the type `access` is a temporary handle to the resource (e.g.,
imagine `resource` is a file name and `access` a file descriptor).
Calling `with_resource r f` will access `r`, give the result to `f`,
compute the result of `f` and, whether `f` succeeds or raises an
error, it will free the resource.
Consider for instance:
[source,OCaml]
----
# CCIO.with_out "/tmp/foobar"
(fun out_channel ->
CCIO.write_lines_l out_channel ["hello"; "world"]);;
- : unit = ()
----
This just opened the file '/tmp/foobar', creating it if it didn't exist,
and wrote two lines in it. We did not have to close the file descriptor
because `with_out` took care of it. By the way, the type signatures are:
[source,OCaml]
----
val with_out :
?mode:int -> ?flags:open_flag list ->
string -> (out_channel -> 'a) -> 'a
val write_lines_l : out_channel -> string list -> unit
----
So we see the pattern for `with_out` (which opens a function in write
mode and gives its functional argument the corresponding file descriptor).
NOTE: you should never let the resource escape the
scope of the `with_resource` call, because it will not be valid outside.
OCaml's type system doesn't make it easy to forbid that so we rely
on convention here (it would be possible, but cumbersome, using
a record with an explicitely quantified function type).
Now we can read the file again:
[source,OCaml]
----
# let lines = CCIO.with_in "/tmp/foobar" CCIO.read_lines_l ;;
val lines : string list = ["hello"; "world"]
----
There are some other functions in `CCIO` that return _generators_
instead of lists. The type of generators in containers
is `type 'a gen = unit -> 'a option` (combinators can be
found in the opam library called "gen"). A generator is to be called
to obtain successive values, until it returns `None` (which means it
has been exhausted). In particular, python users might recognize
the function
[source,OCaml]
----
# CCIO.File.walk ;;
- : string -> walk_item gen = <fun>;;
----
where `type walk_item = [ `Dir | `File ] * string` is a path
paired with a flag distinguishing files from directories.
== To go further: containers.data
There is also a sub-library called `containers.data`, with lots of
more specialized data-structures.
The documentation contains the API for all the modules
(see link:README.adoc[the readme]); they also provide
interface to `sequence` and, as the rest of containers, minimize
dependencies over other modules. To use `containers.data` you need to link it,
either in your build system or by `#require containers.data;;`
A quick example based on purely functional double-ended queues:
[source,OCaml]
----
# #require "containers.data";;
# #install_printer CCFQueue.print;; (* better printing of queues! *)
# let q = CCFQueue.of_list [2;3;4] ;;
val q : int CCFQueue.t = queue {2; 3; 4}
# let q2 = q |> CCFQueue.cons 1 |> CCFQueue.cons 0 ;;
val q2 : int CCFQueue.t = queue {0; 1; 2; 3; 4}
(* remove first element *)
# CCFQueue.take_front q2;;
- : (int * int CCFQueue.t) option = Some (0, queue {1; 2; 3; 4})
(* q was not changed *)
# CCFQueue.take_front q;;
- : (int * int CCFQueue.t) option = Some (2, queue {3; 4})
(* take works on both ends of the queue *)
# CCFQueue.take_back_l 2 q2;;
- : int CCFQueue.t * int list = (queue {0; 1; 2}, [3; 4])
----

2
_oasis
View file

@ -1,6 +1,6 @@
OASISFormat: 0.4 OASISFormat: 0.4
Name: containers Name: containers
Version: 1.0 Version: 1.1
Homepage: https://github.com/c-cube/ocaml-containers Homepage: https://github.com/c-cube/ocaml-containers
Authors: Simon Cruanes Authors: Simon Cruanes
License: BSD-2-clause License: BSD-2-clause

77
doc/containers.adoc Normal file
View file

@ -0,0 +1,77 @@
= OCaml-containers =
:toc: macro
:source-highlighter: pygments
This document contains more information on some modules of Containers.
toc::[]
== Hash combinators: `CCHash`
Although OCaml provides polymorphic hash tables (`('a,'b) Hashtbl.t`)
using the polymorphic equality `(=)` and hash `Hashtbl.hash`, it is often
safer and more efficient to use `Hashtbl.Make` (or the extended `CCHashtbl.Make`)
with custom equality and hash functions.
`CCHash` provides combinators for writing hash functions:
[source,OCaml]
----
# module H = CCHash;;
# let hash1 : (int * bool) list H.t = H.(list (pair int bool));;
# hash1 [1, true; 2, false; 3, true];;
- : int = 636041136
(* the function hashes the whole value, can be costly *)
# hash1 CCList.(1 -- 1000 |> map (fun i->i, i mod 2 = 0));;
- : int = 845685523
# hash1 CCList.(1 -- 1001 |> map (fun i->i, i mod 2 = 0));;
- : int = 381026697
----
The polymorphic hash function is still present, as `CCHash.poly`.
The functions `CCHash.list_comm` and `CCHash.array_comm` allow to hash
lists and arrays while ignoring the order of elements: all permutations
of the input will have the same hash.
== Parser Combinator: `CCParse`
:toc: macro
:source-highlighter: pygments
The module `CCParse` defines basic parser combinators on strings.
Adapting https://github.com/inhabitedtype/angstrom#usage[angstrom's tutorial example] gives the following snippet.
Note that backtracking is explicit in `CCParse`, hence
the use of `try_` to allow it in some places.
Explicit memoization with `memo` and `fix_memo` is also possible.
[source,OCaml]
----
open CCParse.Infix;;
module P = CCParse;;
let parens p = P.try_ (P.char '(') *> p <* P.char ')' ;;
let add = P.char '+' *> P.return (+) ;;
let sub = P.char '-' *> P.return (-) ;;
let mul = P.char '*' *> P.return ( * ) ;;
let div = P.char '/' *> P.return ( / ) ;;
let integer =
P.chars1_if (function '0'..'9'->true|_->false) >|= int_of_string ;;
let chainl1 e op =
P.fix (fun r ->
e >>= fun x -> P.try_ (op <*> P.return x <*> r) <|> P.return x) ;;
let expr : int P.t =
P.fix (fun expr ->
let factor = parens expr <|> integer in
let term = chainl1 factor (mul <|> div) in
chainl1 term (add <|> sub)) ;;
P.parse_string expr "4*1+2";; (* Ok 6 *)
P.parse_string expr "4*(1+2)";; (* Ok 12 *)
----

Binary file not shown.

Before

Width:  |  Height:  |  Size: 89 KiB

View file

@ -26,15 +26,7 @@ end
| [] -> true | [] -> true
| x::((y::_) as l') -> x <= y && is_sorted l' | x::((y::_) as l') -> x <= y && is_sorted l'
let extract_list heap = let extract_list = H.to_list_sorted
let rec recurse acc h =
if H.is_empty h
then List.rev acc
else
let h', x = H.take_exn h in
recurse (x::acc) h'
in
recurse [] heap
*) *)
(*$R (*$R
@ -77,6 +69,15 @@ end
) )
*) *)
(*$QR
Q.(list_of_size Gen.(return 1_000) int) (fun l ->
(* put elements into a heap *)
let h = H.of_seq (Sequence.of_list l) in
let l' = H.to_seq_sorted h |> Sequence.to_list in
is_sorted l'
)
*)
module type S = sig module type S = sig
type elt type elt
type t type t
@ -133,17 +134,31 @@ module type S = sig
are now [add_seq], [add_gen], [add_klist]) *) are now [add_seq], [add_gen], [add_klist]) *)
val to_list : t -> elt list val to_list : t -> elt list
(** Return the elements of the heap, in no particular order. *)
val add_list : t -> elt list -> t (** @since 0.16 *) val to_list_sorted : t -> elt list
(** Return the elements in increasing order
@since 1.1 *)
val add_list : t -> elt list -> t
(** Add the elements of the list to the heap. An element occurring several
times will be added that many times to the heap.
@since 0.16 *)
val of_list : elt list -> t val of_list : elt list -> t
(** [of_list l = add_list empty l] *)
val add_seq : t -> elt sequence -> t (** @since 0.16 *) val add_seq : t -> elt sequence -> t (** @since 0.16 *)
(** Similar to {!add_list} *)
val of_seq : elt sequence -> t val of_seq : elt sequence -> t
val to_seq : t -> elt sequence val to_seq : t -> elt sequence
val to_seq_sorted : t -> elt sequence
(** Iterate on the elements, in increasing order
@since 1.1 *)
val add_klist : t -> elt klist -> t (** @since 0.16 *) val add_klist : t -> elt klist -> t (** @since 0.16 *)
val of_klist : elt klist -> t val of_klist : elt klist -> t
@ -251,6 +266,13 @@ module Make(E : PARTIAL_ORD) : S with type elt = E.t = struct
x::aux (aux acc l) r x::aux (aux acc l) r
in aux [] h in aux [] h
let to_list_sorted heap =
let rec recurse acc h = match take h with
| None -> List.rev acc
| Some (h',x) -> recurse (x::acc) h'
in
recurse [] heap
let add_list h l = List.fold_left add h l let add_list h l = List.fold_left add h l
let of_list l = add_list empty l let of_list l = add_list empty l
@ -264,6 +286,13 @@ module Make(E : PARTIAL_ORD) : S with type elt = E.t = struct
let to_seq h k = iter k h let to_seq h k = iter k h
let to_seq_sorted heap =
let rec recurse h k = match take h with
| None -> ()
| Some (h',x) -> k x; recurse h' k
in
fun k -> recurse heap k
let rec add_klist h l = match l() with let rec add_klist h l = match l() with
| `Nil -> h | `Nil -> h
| `Cons (x, l') -> | `Cons (x, l') ->

View file

@ -71,6 +71,11 @@ module type S = sig
are now [add_seq], [add_gen], [add_klist]) *) are now [add_seq], [add_gen], [add_klist]) *)
val to_list : t -> elt list val to_list : t -> elt list
(** Return the elements of the heap, in no particular order. *)
val to_list_sorted : t -> elt list
(** Return the elements in increasing order
@since 1.1 *)
val add_list : t -> elt list -> t val add_list : t -> elt list -> t
(** Add the elements of the list to the heap. An element occurring several (** Add the elements of the list to the heap. An element occurring several
@ -87,6 +92,10 @@ module type S = sig
val to_seq : t -> elt sequence val to_seq : t -> elt sequence
val to_seq_sorted : t -> elt sequence
(** Iterate on the elements, in increasing order
@since 1.1 *)
val add_klist : t -> elt klist -> t (** @since 0.16 *) val add_klist : t -> elt klist -> t (** @since 0.16 *)
val of_klist : elt klist -> t val of_klist : elt klist -> t

View file

@ -320,6 +320,14 @@ module File = struct
) )
*) *)
let walk_l d =
let l = ref [] in
let g = walk d in
let rec aux () = match g() with
| None -> !l
| Some x -> l := x :: !l; aux ()
in aux ()
type walk_item = [`File | `Dir] * t type walk_item = [`File | `Dir] * t
let read_dir ?(recurse=false) d = let read_dir ?(recurse=false) d =

View file

@ -202,6 +202,11 @@ module File : sig
symlinks, etc.) symlinks, etc.)
@raise Sys_error in case of error (e.g. permission denied) during iteration *) @raise Sys_error in case of error (e.g. permission denied) during iteration *)
val walk_l : t -> walk_item list
(** Same as {!walk} but returns a list (therefore it's eager and might
take some time on large directories)
@since 1.1 *)
val show_walk_item : walk_item -> string val show_walk_item : walk_item -> string
val with_temp : val with_temp :

View file

@ -13,8 +13,6 @@ let map_or ~default f = function
| None -> default | None -> default
| Some x -> f x | Some x -> f x
let maybe f default = map_or ~default f
let is_some = function let is_some = function
| None -> false | None -> false
| Some _ -> true | Some _ -> true
@ -69,7 +67,13 @@ let map2 f o1 o2 = match o1, o2 with
let filter p = function let filter p = function
| Some x as o when p x -> o | Some x as o when p x -> o
| o -> o | _ -> None
(*$=
None (filter ((=) 0) (Some 1))
(Some 0) (filter ((=) 0) (Some 0))
None (filter (fun _ -> true) None)
*)
let if_ p x = if p x then Some x else None let if_ p x = if p x then Some x else None
@ -89,10 +93,6 @@ let fold f acc o = match o with
| None -> acc | None -> acc
| Some x -> f acc x | Some x -> f acc x
let get default x = match x with
| None -> default
| Some y -> y
let get_or ~default x = match x with let get_or ~default x = match x with
| None -> default | None -> default
| Some y -> y | Some y -> y

View file

@ -23,7 +23,7 @@ val float : float t
(** {2 Lexicographic Combination} *) (** {2 Lexicographic Combination} *)
val (<?>) : int -> ('a t * 'a * 'a) -> int val (<?>) : int -> ('a t * 'a * 'a) -> int
(** [c1 @@? (ord, x, y)] returns the same as [c1] if [c1] is not [0]; (** [c1 <?> (ord, x, y)] returns the same as [c1] if [c1] is not [0];
otherwise it uses [ord] to compare the two values [x] and [y], otherwise it uses [ord] to compare the two values [x] and [y],
of type ['a]. of type ['a].

View file

@ -118,6 +118,34 @@
*) *)
(*$R
let open CCParse.Infix in
let module P = CCParse in
let parens p = P.try_ (P.char '(') *> p <* P.char ')' in
let add = P.char '+' *> P.return (+) in
let sub = P.char '-' *> P.return (-) in
let mul = P.char '*' *> P.return ( * ) in
let div = P.char '/' *> P.return ( / ) in
let integer =
P.chars1_if (function '0'..'9'->true|_->false) >|= int_of_string in
let chainl1 e op =
P.fix (fun r ->
e >>= fun x -> P.try_ (op <*> P.return x <*> r) <|> P.return x) in
let expr : int P.t =
P.fix (fun expr ->
let factor = parens expr <|> integer in
let term = chainl1 factor (mul <|> div) in
chainl1 term (add <|> sub)) in
assert_equal (Ok 6) (P.parse_string expr "4*1+2");
assert_equal (Ok 12) (P.parse_string expr "4*(1+2)");
()
*)
type 'a or_error = ('a, string) Result.result type 'a or_error = ('a, string) Result.result
type line_num = int type line_num = int

View file

@ -252,16 +252,16 @@ module Traverse = struct
bag.push (`Enter (v, [])); bag.push (`Enter (v, []));
while not (bag.is_empty ()) do while not (bag.is_empty ()) do
match bag.pop () with match bag.pop () with
| `Enter (x, path) -> | `Enter (v, path) ->
if not (tags.get_tag x) then ( if not (tags.get_tag v) then (
let num = !n in let num = !n in
incr n; incr n;
tags.set_tag x; tags.set_tag v;
k (`Enter (x, num, path)); k (`Enter (v, num, path));
bag.push (`Exit x); bag.push (`Exit v);
Seq.iter Seq.iter
(fun (e,v') -> bag.push (`Edge (v,e,v',(v,e,v') :: path))) (fun (e,v') -> bag.push (`Edge (v,e,v',(v,e,v') :: path)))
(graph x); (graph v);
) )
| `Exit x -> k (`Exit x) | `Exit x -> k (`Exit x)
| `Edge (v,e,v', path) -> | `Edge (v,e,v', path) ->
@ -286,6 +286,21 @@ module Traverse = struct
} in } in
dfs_tag ?eq ~tags ~graph seq dfs_tag ?eq ~tags ~graph seq
end end
(*$R
let l =
Traverse.Event.dfs ~graph:divisors_graph (Sequence.return 345614)
|> Sequence.to_list in
let expected =
[`Enter (345614, 0, []); `Edge (345614, (), 172807, `Forward);
`Enter (172807, 1, [(345614, (), 172807)]); `Edge (172807, (), 1, `Forward);
`Enter (1, 2, [(172807, (), 1); (345614, (), 172807)]); `Exit 1; `Exit 172807;
`Edge (345614, (), 2, `Forward); `Enter (2, 3, [(345614, (), 2)]);
`Edge (2, (), 1, `Cross); `Exit 2; `Edge (345614, (), 1, `Cross);
`Exit 345614]
in
assert_equal expected l
*)
end end
(** {2 Cycles} *) (** {2 Cycles} *)

View file

@ -498,6 +498,19 @@ module Make(P : PARAM) = struct
OUnit.assert_raises Exit (fun () -> Fut.get l') OUnit.assert_raises Exit (fun () -> Fut.get l')
*) *)
(*$R
let rec fib x = if x<2 then 1 else fib (x-1)+fib(x-2) in
let l =
CCList.(1--10_000)
|> List.rev_map
(fun x-> Fut.make (fun () -> Thread.yield(); fib (x mod 30)))
|> Fut.(map_l (fun x->x>|= fun x->x+1))
in
OUnit.assert_bool "not done" (Fut.state l = Waiting);
let l' = Fut.get l in
OUnit.assert_equal 10_000 (List.length l');
*)
let choose_ let choose_
: type a. a t array_or_list -> a t : type a. a t array_or_list -> a t
= fun aol -> = fun aol ->