stubs for LazyGraph functions;

added LazyGraph to containers.mllib
This commit is contained in:
Simon Cruanes 2013-03-19 00:32:37 +01:00
parent f3206ca019
commit a3c7b70e53
3 changed files with 287 additions and 12 deletions

View file

@ -1,14 +1,15 @@
Vector
Cache
Deque
Enum
Graph
Cache
FlatHashtbl
FHashtbl
FQueue
FlatHashtbl
Graph
Hashset
Heap
LazyGraph
PHashtbl
Sequence
SplayTree
PHashtbl
Heap
Univ
Vector

View file

@ -25,3 +25,273 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
(** {1 Lazy graph data structure} *)
module type S = sig
(** This module serves to represent directed graphs in a lazy fashion. Such
a graph is always accessed from a given initial node (so only connected
components can be represented by a single value of type ('v,'e) t). *)
(** {2 Type definitions} *)
type vertex
(** The concrete type of a vertex. Vertices are considered unique within
the graph. *)
type ('v, 'e) t = vertex -> ('v, 'e) node
(** Lazy graph structure. Vertices are annotated with values of type 'v,
and edges are of type 'e. A graph is a function that maps vertices
to a label and some edges to other vertices. *)
and ('v, 'e) node =
| Empty
| Node of vertex * 'v * ('e * vertex) Enum.t
(** A single node of the graph, with outgoing edges *)
(** {2 Basic constructors} *)
(** It is difficult to provide generic combinators to build graphs. The problem
is that if one wants to "update" a node, it's still very hard to update
how other nodes re-generate the current node at the same time. *)
val empty : ('v, 'e) t
(** Empty graph *)
val singleton : vertex -> 'v -> ('v, 'e) t
(** Trivial graph, composed of one node *)
val from_enum : vertices:(vertex * 'v) Enum.t ->
edges:(vertex * 'e * vertex) Enum.t ->
('v, 'e) t
(** Concrete (eager) representation of a Graph *)
val from_fun : (vertex -> ('v * ('e * vertex) list) option) -> ('v, 'e) t
(** Convenient semi-lazy implementation of graphs *)
(** {2 Traversals} *)
(** {3 Full interface to traversals} *)
module Full : sig
type ('v, 'e) traverse_event =
| EnterVertex of vertex * 'v * int * vertex list (* unique ID, trail *)
| ExitVertex of vertex (* trail *)
| MeetEdge of vertex * 'e * vertex * edge_type (* edge *)
and edge_type =
| EdgeForward (* toward non explored vertex *)
| EdgeBackward (* toward the current trail *)
| EdgeTransverse (* toward a totally explored part of the graph *)
val bfs_full : ?id:int -> ('v, 'e) t -> vertex -> ('v, 'e) traverse_event Enum.t
val dfs_full : ?id:int -> ('v, 'e) t -> vertex -> ('v, 'e) traverse_event Enum.t
(** Lazy traversal in depth first *)
end
(** The traversal functions assign a unique ID to every traversed node *)
val bfs : ?id:int -> ('v, 'e) t -> vertex -> (vertex * 'v * int) Enum.t
(** Lazy traversal in breadth first *)
val dfs : ?id:int -> ('v, 'e) t -> vertex -> (vertex * 'v * int) Enum.t
(** Lazy traversal in depth first *)
val enum : ('v, 'e) t -> vertex -> (vertex * 'v) Enum.t * (vertex * 'e * vertex) Enum.t
(** Convert to an enumeration. The traversal order is undefined. *)
val depth : (_, 'e) t -> vertex -> (int, 'e) t
(** Map vertices to their depth, ie their distance from the initial point *)
type 'e path = (vertex * 'e * vertex) list
val min_path : ?distance:(vertex -> 'e -> vertex -> int) ->
('v, 'e) t -> vertex -> vertex ->
int * 'e path
(** Minimal path from the given Graph from the first vertex to
the second. It returns both the distance and the path *)
(** {2 Lazy transformations} *)
val union : ?combine:('v -> 'v -> 'v) -> ('v, 'e) t -> ('v, 'e) t -> ('v, 'e) t
(** Lazy union of the two graphs. If they have common vertices,
[combine] is used to combine the labels. By default, the second
label is dropped and only the first is kept *)
val map : vertices:('v -> 'v2) -> edges:('e -> 'e2) ->
('v, 'e) t -> ('v2, 'e2) t
(** Map vertice and edge labels *)
val filter : ?vertices:(vertex -> 'v -> bool) ->
?edges:(vertex -> 'e -> vertex -> bool) ->
('v, 'e) t -> ('v, 'e) t
(** Filter out vertices and edges that do not satisfy the given
predicates. The default predicates always return true. *)
val limit_depth : max:int -> ('v, 'e) t -> ('v, 'e) t
(** Return the same graph, but with a bounded depth. Vertices whose
depth is too high will be replaced by Empty *)
module Infix : sig
val (++) : ('v, 'e) t -> ('v, 'e) t -> ('v, 'e) t
(** Union of graphs (alias for {! union}) *)
end
(** {2 Pretty printing in the DOT (graphviz) format *)
module Dot : sig
type graph
(** A DOT graph *)
val empty : string -> graph
(** Create an empty graph with the given name *)
type attribute = [
| `Color of string
| `Shape of string
| `Weight of int
| `Style of string
| `Label of string
| `Other of string * string
] (** Dot attribute *)
val add : print_edge:(vertex -> 'e -> vertex -> attribute list) ->
print_vertex:(vertex -> 'v -> attribute list) ->
graph ->
('v,'e) t -> vertex Enum.t ->
graph
(** Add the given vertices of the graph to the DOT graph *)
val pp : Format.formatter -> graph -> unit
(** Pretty print the graph in DOT, on the given formatter. *)
val to_string : graph -> string
(** Pretty print the graph in a string *)
end
end
(** {2 Module type for hashable types} *)
module type HASHABLE = sig
type t
val equal : t -> t -> bool
val hash : t -> int
end
(** {2 Implementation of HASHABLE with physical equality and hash} *)
module PhysicalHash(X : sig type t end) : HASHABLE with type t = X.t
= struct
type t = X.t
let equal a b = a == b
let hash a = Hashtbl.hash a
end
(** {2 Build a graph} *)
module Make(X : HASHABLE) : S with type vertex = X.t = struct
(** {2 Type definitions} *)
type vertex = X.t
(** The concrete type of a vertex. Vertices are considered unique within
the graph. *)
type ('v, 'e) t = vertex -> ('v, 'e) node
(** Lazy graph structure. Vertices are annotated with values of type 'v,
and edges are of type 'e. A graph is a function that maps vertices
to a label and some edges to other vertices. *)
and ('v, 'e) node =
| Empty
| Node of vertex * 'v * ('e * vertex) Enum.t
(** A single node of the graph, with outgoing edges *)
(** {2 Basic constructors} *)
let empty =
fun _ -> Empty
let singleton v label =
fun v' ->
if X.equal v v' then Node (v, label, Enum.empty) else Empty
let from_enum ~vertices ~edges = failwith "from_enum: not implemented"
let from_fun f =
fun v ->
match f v with
| None -> Empty
| Some (l, edges) -> Node (v, l, Enum.of_list edges)
(** {2 Traversals} *)
(** {3 Full interface to traversals} *)
module Full = struct
type ('v, 'e) traverse_event =
| EnterVertex of vertex * 'v * int * vertex list (* unique ID, trail *)
| ExitVertex of vertex (* trail *)
| MeetEdge of vertex * 'e * vertex * edge_type (* edge *)
and edge_type =
| EdgeForward (* toward non explored vertex *)
| EdgeBackward (* toward the current trail *)
| EdgeTransverse (* toward a totally explored part of the graph *)
let bfs_full ?(id=0) graph v = Enum.empty (* TODO *)
let dfs_full ?(id=0) graph v = Enum.empty (* TODO *)
end
let bfs ?id graph v = Enum.empty (* TODO *)
let dfs ?id graph v = Enum.empty (* TODO *)
let enum graph v = (Enum.empty, Enum.empty) (* TODO *)
let depth graph v = failwith "not implemented"
type 'e path = (vertex * 'e * vertex) list
(** Minimal path from the given Graph from the first vertex to
the second. It returns both the distance and the path *)
let min_path ?(distance=fun v1 e v2 -> 1) graph v1 v2 = failwith "not implemented"
(** {2 Lazy transformations} *)
let union ?(combine=fun x y -> x) g1 g2 =
fun v ->
match g1 v, g2 v with
| Empty, Empty -> Empty
| ((Node _) as n), Empty -> n
| Empty, ((Node _) as n) -> n
| Node (_, l1, e1), Node (_, l2, e2) ->
Node (v, combine l1 l2, Enum.append e1 e2)
let map ~vertices ~edges g = failwith "not implemented"
let filter ?(vertices=fun v l -> true) ?(edges=fun v1 e v2 -> true) g =
failwith "not implemented"
let limit_depth ~max g = failwith "not implemented"
module Infix = struct
let (++) g1 g2 = union ?combine:None g1 g2
end
module Dot = struct
type graph = Graph of string (* TODO *)
let empty name = Graph name
type attribute = [
| `Color of string
| `Shape of string
| `Weight of int
| `Style of string
| `Label of string
| `Other of string * string
] (** Dot attribute *)
let add ~print_edge ~print_vertex graph g vertices = graph (* TODO *)
let pp formatter graph = failwith "not implemented"
let to_string graph =
let b = Buffer.create 64 in
Format.bprintf b "%a@?" pp graph;
Buffer.contents b
end
end
(** {2 Build a graph based on physical equality} *)
module PhysicalMake(X : sig type t end) : S with type vertex = X.t
= Make(PhysicalHash(X))

View file

@ -49,7 +49,10 @@ module type S = sig
(** It is difficult to provide generic combinators to build graphs. The problem
is that if one wants to "update" a node, it's still very hard to update
how other nodes re-generate the current node at the same time. *)
how other nodes re-generate the current node at the same time.
The best way to do it is to build one function that maps the
underlying structure of the type vertex to a graph (for instance,
a concrete data structure, or an URL...). *)
val empty : ('v, 'e) t
(** Empty graph *)
@ -60,9 +63,9 @@ module type S = sig
val from_enum : vertices:(vertex * 'v) Enum.t ->
edges:(vertex * 'e * vertex) Enum.t ->
('v, 'e) t
(** Concrete (eager) representation of a Graph *)
(** Concrete (eager) representation of a Graph (XXX not implemented)*)
val from_fun : (vertex -> 'v * ('e * vertex) list) -> vertex -> ('v, 'e) t
val from_fun : (vertex -> ('v * ('e * vertex) list) option) -> ('v, 'e) t
(** Convenient semi-lazy implementation of graphs *)
(** {2 Traversals} *)
@ -79,6 +82,7 @@ module type S = sig
| EdgeTransverse (* toward a totally explored part of the graph *)
val bfs_full : ?id:int -> ('v, 'e) t -> vertex -> ('v, 'e) traverse_event Enum.t
(** Lazy traversal in breadth first *)
val dfs_full : ?id:int -> ('v, 'e) t -> vertex -> ('v, 'e) traverse_event Enum.t
(** Lazy traversal in depth first *)
@ -92,10 +96,10 @@ module type S = sig
val dfs : ?id:int -> ('v, 'e) t -> vertex -> (vertex * 'v * int) Enum.t
(** Lazy traversal in depth first *)
val enum : ('v, 'e) t -> (vertex * 'v) Enum.t * (vertex * 'e * vertex) Enum.t
val enum : ('v, 'e) t -> vertex -> (vertex * 'v) Enum.t * (vertex * 'e * vertex) Enum.t
(** Convert to an enumeration. The traversal order is undefined. *)
val depth : (_, 'e) t -> (int, 'e) t
val depth : (_, 'e) t -> vertex -> (int, 'e) t
(** Map vertices to their depth, ie their distance from the initial point *)
type 'e path = (vertex * 'e * vertex) list
@ -113,7 +117,7 @@ module type S = sig
[combine] is used to combine the labels. By default, the second
label is dropped and only the first is kept *)
val map : ?vertices:('v -> 'v2) -> ?edges:('e -> 'e2) ->
val map : vertices:('v -> 'v2) -> edges:('e -> 'e2) ->
('v, 'e) t -> ('v2, 'e2) t
(** Map vertice and edge labels *)