mirror of
https://github.com/c-cube/ocaml-containers.git
synced 2025-12-06 11:15:31 -05:00
stubs for LazyGraph functions;
added LazyGraph to containers.mllib
This commit is contained in:
parent
f3206ca019
commit
a3c7b70e53
3 changed files with 287 additions and 12 deletions
|
|
@ -1,14 +1,15 @@
|
|||
Vector
|
||||
Cache
|
||||
Deque
|
||||
Enum
|
||||
Graph
|
||||
Cache
|
||||
FlatHashtbl
|
||||
FHashtbl
|
||||
FQueue
|
||||
FlatHashtbl
|
||||
Graph
|
||||
Hashset
|
||||
Heap
|
||||
LazyGraph
|
||||
PHashtbl
|
||||
Sequence
|
||||
SplayTree
|
||||
PHashtbl
|
||||
Heap
|
||||
Univ
|
||||
Vector
|
||||
|
|
|
|||
270
lazyGraph.ml
270
lazyGraph.ml
|
|
@ -25,3 +25,273 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|||
|
||||
(** {1 Lazy graph data structure} *)
|
||||
|
||||
module type S = sig
|
||||
(** This module serves to represent directed graphs in a lazy fashion. Such
|
||||
a graph is always accessed from a given initial node (so only connected
|
||||
components can be represented by a single value of type ('v,'e) t). *)
|
||||
|
||||
(** {2 Type definitions} *)
|
||||
|
||||
type vertex
|
||||
(** The concrete type of a vertex. Vertices are considered unique within
|
||||
the graph. *)
|
||||
|
||||
type ('v, 'e) t = vertex -> ('v, 'e) node
|
||||
(** Lazy graph structure. Vertices are annotated with values of type 'v,
|
||||
and edges are of type 'e. A graph is a function that maps vertices
|
||||
to a label and some edges to other vertices. *)
|
||||
and ('v, 'e) node =
|
||||
| Empty
|
||||
| Node of vertex * 'v * ('e * vertex) Enum.t
|
||||
(** A single node of the graph, with outgoing edges *)
|
||||
|
||||
(** {2 Basic constructors} *)
|
||||
|
||||
(** It is difficult to provide generic combinators to build graphs. The problem
|
||||
is that if one wants to "update" a node, it's still very hard to update
|
||||
how other nodes re-generate the current node at the same time. *)
|
||||
|
||||
val empty : ('v, 'e) t
|
||||
(** Empty graph *)
|
||||
|
||||
val singleton : vertex -> 'v -> ('v, 'e) t
|
||||
(** Trivial graph, composed of one node *)
|
||||
|
||||
val from_enum : vertices:(vertex * 'v) Enum.t ->
|
||||
edges:(vertex * 'e * vertex) Enum.t ->
|
||||
('v, 'e) t
|
||||
(** Concrete (eager) representation of a Graph *)
|
||||
|
||||
val from_fun : (vertex -> ('v * ('e * vertex) list) option) -> ('v, 'e) t
|
||||
(** Convenient semi-lazy implementation of graphs *)
|
||||
|
||||
(** {2 Traversals} *)
|
||||
|
||||
(** {3 Full interface to traversals} *)
|
||||
module Full : sig
|
||||
type ('v, 'e) traverse_event =
|
||||
| EnterVertex of vertex * 'v * int * vertex list (* unique ID, trail *)
|
||||
| ExitVertex of vertex (* trail *)
|
||||
| MeetEdge of vertex * 'e * vertex * edge_type (* edge *)
|
||||
and edge_type =
|
||||
| EdgeForward (* toward non explored vertex *)
|
||||
| EdgeBackward (* toward the current trail *)
|
||||
| EdgeTransverse (* toward a totally explored part of the graph *)
|
||||
|
||||
val bfs_full : ?id:int -> ('v, 'e) t -> vertex -> ('v, 'e) traverse_event Enum.t
|
||||
|
||||
val dfs_full : ?id:int -> ('v, 'e) t -> vertex -> ('v, 'e) traverse_event Enum.t
|
||||
(** Lazy traversal in depth first *)
|
||||
end
|
||||
|
||||
(** The traversal functions assign a unique ID to every traversed node *)
|
||||
|
||||
val bfs : ?id:int -> ('v, 'e) t -> vertex -> (vertex * 'v * int) Enum.t
|
||||
(** Lazy traversal in breadth first *)
|
||||
|
||||
val dfs : ?id:int -> ('v, 'e) t -> vertex -> (vertex * 'v * int) Enum.t
|
||||
(** Lazy traversal in depth first *)
|
||||
|
||||
val enum : ('v, 'e) t -> vertex -> (vertex * 'v) Enum.t * (vertex * 'e * vertex) Enum.t
|
||||
(** Convert to an enumeration. The traversal order is undefined. *)
|
||||
|
||||
val depth : (_, 'e) t -> vertex -> (int, 'e) t
|
||||
(** Map vertices to their depth, ie their distance from the initial point *)
|
||||
|
||||
type 'e path = (vertex * 'e * vertex) list
|
||||
|
||||
val min_path : ?distance:(vertex -> 'e -> vertex -> int) ->
|
||||
('v, 'e) t -> vertex -> vertex ->
|
||||
int * 'e path
|
||||
(** Minimal path from the given Graph from the first vertex to
|
||||
the second. It returns both the distance and the path *)
|
||||
|
||||
(** {2 Lazy transformations} *)
|
||||
|
||||
val union : ?combine:('v -> 'v -> 'v) -> ('v, 'e) t -> ('v, 'e) t -> ('v, 'e) t
|
||||
(** Lazy union of the two graphs. If they have common vertices,
|
||||
[combine] is used to combine the labels. By default, the second
|
||||
label is dropped and only the first is kept *)
|
||||
|
||||
val map : vertices:('v -> 'v2) -> edges:('e -> 'e2) ->
|
||||
('v, 'e) t -> ('v2, 'e2) t
|
||||
(** Map vertice and edge labels *)
|
||||
|
||||
val filter : ?vertices:(vertex -> 'v -> bool) ->
|
||||
?edges:(vertex -> 'e -> vertex -> bool) ->
|
||||
('v, 'e) t -> ('v, 'e) t
|
||||
(** Filter out vertices and edges that do not satisfy the given
|
||||
predicates. The default predicates always return true. *)
|
||||
|
||||
val limit_depth : max:int -> ('v, 'e) t -> ('v, 'e) t
|
||||
(** Return the same graph, but with a bounded depth. Vertices whose
|
||||
depth is too high will be replaced by Empty *)
|
||||
|
||||
module Infix : sig
|
||||
val (++) : ('v, 'e) t -> ('v, 'e) t -> ('v, 'e) t
|
||||
(** Union of graphs (alias for {! union}) *)
|
||||
end
|
||||
|
||||
(** {2 Pretty printing in the DOT (graphviz) format *)
|
||||
module Dot : sig
|
||||
type graph
|
||||
(** A DOT graph *)
|
||||
|
||||
val empty : string -> graph
|
||||
(** Create an empty graph with the given name *)
|
||||
|
||||
type attribute = [
|
||||
| `Color of string
|
||||
| `Shape of string
|
||||
| `Weight of int
|
||||
| `Style of string
|
||||
| `Label of string
|
||||
| `Other of string * string
|
||||
] (** Dot attribute *)
|
||||
|
||||
val add : print_edge:(vertex -> 'e -> vertex -> attribute list) ->
|
||||
print_vertex:(vertex -> 'v -> attribute list) ->
|
||||
graph ->
|
||||
('v,'e) t -> vertex Enum.t ->
|
||||
graph
|
||||
(** Add the given vertices of the graph to the DOT graph *)
|
||||
|
||||
val pp : Format.formatter -> graph -> unit
|
||||
(** Pretty print the graph in DOT, on the given formatter. *)
|
||||
|
||||
val to_string : graph -> string
|
||||
(** Pretty print the graph in a string *)
|
||||
end
|
||||
end
|
||||
|
||||
(** {2 Module type for hashable types} *)
|
||||
module type HASHABLE = sig
|
||||
type t
|
||||
val equal : t -> t -> bool
|
||||
val hash : t -> int
|
||||
end
|
||||
|
||||
(** {2 Implementation of HASHABLE with physical equality and hash} *)
|
||||
module PhysicalHash(X : sig type t end) : HASHABLE with type t = X.t
|
||||
= struct
|
||||
type t = X.t
|
||||
let equal a b = a == b
|
||||
let hash a = Hashtbl.hash a
|
||||
end
|
||||
|
||||
(** {2 Build a graph} *)
|
||||
module Make(X : HASHABLE) : S with type vertex = X.t = struct
|
||||
(** {2 Type definitions} *)
|
||||
|
||||
type vertex = X.t
|
||||
(** The concrete type of a vertex. Vertices are considered unique within
|
||||
the graph. *)
|
||||
|
||||
type ('v, 'e) t = vertex -> ('v, 'e) node
|
||||
(** Lazy graph structure. Vertices are annotated with values of type 'v,
|
||||
and edges are of type 'e. A graph is a function that maps vertices
|
||||
to a label and some edges to other vertices. *)
|
||||
and ('v, 'e) node =
|
||||
| Empty
|
||||
| Node of vertex * 'v * ('e * vertex) Enum.t
|
||||
(** A single node of the graph, with outgoing edges *)
|
||||
|
||||
(** {2 Basic constructors} *)
|
||||
|
||||
let empty =
|
||||
fun _ -> Empty
|
||||
|
||||
let singleton v label =
|
||||
fun v' ->
|
||||
if X.equal v v' then Node (v, label, Enum.empty) else Empty
|
||||
|
||||
let from_enum ~vertices ~edges = failwith "from_enum: not implemented"
|
||||
|
||||
let from_fun f =
|
||||
fun v ->
|
||||
match f v with
|
||||
| None -> Empty
|
||||
| Some (l, edges) -> Node (v, l, Enum.of_list edges)
|
||||
|
||||
(** {2 Traversals} *)
|
||||
|
||||
(** {3 Full interface to traversals} *)
|
||||
module Full = struct
|
||||
type ('v, 'e) traverse_event =
|
||||
| EnterVertex of vertex * 'v * int * vertex list (* unique ID, trail *)
|
||||
| ExitVertex of vertex (* trail *)
|
||||
| MeetEdge of vertex * 'e * vertex * edge_type (* edge *)
|
||||
and edge_type =
|
||||
| EdgeForward (* toward non explored vertex *)
|
||||
| EdgeBackward (* toward the current trail *)
|
||||
| EdgeTransverse (* toward a totally explored part of the graph *)
|
||||
|
||||
let bfs_full ?(id=0) graph v = Enum.empty (* TODO *)
|
||||
|
||||
let dfs_full ?(id=0) graph v = Enum.empty (* TODO *)
|
||||
end
|
||||
|
||||
let bfs ?id graph v = Enum.empty (* TODO *)
|
||||
|
||||
let dfs ?id graph v = Enum.empty (* TODO *)
|
||||
|
||||
let enum graph v = (Enum.empty, Enum.empty) (* TODO *)
|
||||
|
||||
let depth graph v = failwith "not implemented"
|
||||
|
||||
type 'e path = (vertex * 'e * vertex) list
|
||||
|
||||
(** Minimal path from the given Graph from the first vertex to
|
||||
the second. It returns both the distance and the path *)
|
||||
let min_path ?(distance=fun v1 e v2 -> 1) graph v1 v2 = failwith "not implemented"
|
||||
|
||||
(** {2 Lazy transformations} *)
|
||||
|
||||
let union ?(combine=fun x y -> x) g1 g2 =
|
||||
fun v ->
|
||||
match g1 v, g2 v with
|
||||
| Empty, Empty -> Empty
|
||||
| ((Node _) as n), Empty -> n
|
||||
| Empty, ((Node _) as n) -> n
|
||||
| Node (_, l1, e1), Node (_, l2, e2) ->
|
||||
Node (v, combine l1 l2, Enum.append e1 e2)
|
||||
|
||||
let map ~vertices ~edges g = failwith "not implemented"
|
||||
|
||||
let filter ?(vertices=fun v l -> true) ?(edges=fun v1 e v2 -> true) g =
|
||||
failwith "not implemented"
|
||||
|
||||
let limit_depth ~max g = failwith "not implemented"
|
||||
|
||||
module Infix = struct
|
||||
let (++) g1 g2 = union ?combine:None g1 g2
|
||||
end
|
||||
|
||||
module Dot = struct
|
||||
type graph = Graph of string (* TODO *)
|
||||
|
||||
let empty name = Graph name
|
||||
|
||||
type attribute = [
|
||||
| `Color of string
|
||||
| `Shape of string
|
||||
| `Weight of int
|
||||
| `Style of string
|
||||
| `Label of string
|
||||
| `Other of string * string
|
||||
] (** Dot attribute *)
|
||||
|
||||
let add ~print_edge ~print_vertex graph g vertices = graph (* TODO *)
|
||||
|
||||
let pp formatter graph = failwith "not implemented"
|
||||
|
||||
let to_string graph =
|
||||
let b = Buffer.create 64 in
|
||||
Format.bprintf b "%a@?" pp graph;
|
||||
Buffer.contents b
|
||||
end
|
||||
end
|
||||
|
||||
(** {2 Build a graph based on physical equality} *)
|
||||
module PhysicalMake(X : sig type t end) : S with type vertex = X.t
|
||||
= Make(PhysicalHash(X))
|
||||
|
|
|
|||
|
|
@ -49,7 +49,10 @@ module type S = sig
|
|||
|
||||
(** It is difficult to provide generic combinators to build graphs. The problem
|
||||
is that if one wants to "update" a node, it's still very hard to update
|
||||
how other nodes re-generate the current node at the same time. *)
|
||||
how other nodes re-generate the current node at the same time.
|
||||
The best way to do it is to build one function that maps the
|
||||
underlying structure of the type vertex to a graph (for instance,
|
||||
a concrete data structure, or an URL...). *)
|
||||
|
||||
val empty : ('v, 'e) t
|
||||
(** Empty graph *)
|
||||
|
|
@ -60,9 +63,9 @@ module type S = sig
|
|||
val from_enum : vertices:(vertex * 'v) Enum.t ->
|
||||
edges:(vertex * 'e * vertex) Enum.t ->
|
||||
('v, 'e) t
|
||||
(** Concrete (eager) representation of a Graph *)
|
||||
(** Concrete (eager) representation of a Graph (XXX not implemented)*)
|
||||
|
||||
val from_fun : (vertex -> 'v * ('e * vertex) list) -> vertex -> ('v, 'e) t
|
||||
val from_fun : (vertex -> ('v * ('e * vertex) list) option) -> ('v, 'e) t
|
||||
(** Convenient semi-lazy implementation of graphs *)
|
||||
|
||||
(** {2 Traversals} *)
|
||||
|
|
@ -79,6 +82,7 @@ module type S = sig
|
|||
| EdgeTransverse (* toward a totally explored part of the graph *)
|
||||
|
||||
val bfs_full : ?id:int -> ('v, 'e) t -> vertex -> ('v, 'e) traverse_event Enum.t
|
||||
(** Lazy traversal in breadth first *)
|
||||
|
||||
val dfs_full : ?id:int -> ('v, 'e) t -> vertex -> ('v, 'e) traverse_event Enum.t
|
||||
(** Lazy traversal in depth first *)
|
||||
|
|
@ -92,10 +96,10 @@ module type S = sig
|
|||
val dfs : ?id:int -> ('v, 'e) t -> vertex -> (vertex * 'v * int) Enum.t
|
||||
(** Lazy traversal in depth first *)
|
||||
|
||||
val enum : ('v, 'e) t -> (vertex * 'v) Enum.t * (vertex * 'e * vertex) Enum.t
|
||||
val enum : ('v, 'e) t -> vertex -> (vertex * 'v) Enum.t * (vertex * 'e * vertex) Enum.t
|
||||
(** Convert to an enumeration. The traversal order is undefined. *)
|
||||
|
||||
val depth : (_, 'e) t -> (int, 'e) t
|
||||
val depth : (_, 'e) t -> vertex -> (int, 'e) t
|
||||
(** Map vertices to their depth, ie their distance from the initial point *)
|
||||
|
||||
type 'e path = (vertex * 'e * vertex) list
|
||||
|
|
@ -113,7 +117,7 @@ module type S = sig
|
|||
[combine] is used to combine the labels. By default, the second
|
||||
label is dropped and only the first is kept *)
|
||||
|
||||
val map : ?vertices:('v -> 'v2) -> ?edges:('e -> 'e2) ->
|
||||
val map : vertices:('v -> 'v2) -> edges:('e -> 'e2) ->
|
||||
('v, 'e) t -> ('v2, 'e2) t
|
||||
(** Map vertice and edge labels *)
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue