feat(ccnativeint): complete CCNativeint with regards to CCInt

This commit is contained in:
Fardale 2020-05-23 11:19:02 +02:00
parent f2c0bc7d09
commit b8ca053a48
2 changed files with 329 additions and 47 deletions

View file

@ -3,6 +3,200 @@
open CCShims_ open CCShims_
include Nativeint include Nativeint
let min : t -> t -> t = Stdlib.min
let max : t -> t -> t = Stdlib.max
let hash x = Stdlib.abs (to_int x)
let sign i = compare i zero
let pow a b =
let rec aux acc = function
| 1n -> acc
| n ->
if equal (rem n 2n) zero
then aux (mul acc acc) (div n 2n)
else mul acc (aux (mul acc acc) (div n 2n))
in
match b with
| 0n -> if equal a 0n then raise (Invalid_argument "pow: undefined value 0^0") else 1n
| b when compare b 0n < 0 -> raise (Invalid_argument "pow: can't raise int to negative power")
| b -> aux a b
(*$T
pow 2n 10n = 1024n
pow 2n 15n = 32768n
pow 10n 5n = 100000n
pow 42n 0n = 1n
pow 0n 1n = 0n
*)
let floor_div a n =
if compare a 0n < 0 && compare n 0n >= 0 then
sub (div (add a 1n) n) 1n
else if compare a 0n > 0 && compare n 0n < 0 then
sub (div (sub a 1n) n) 1n
else
div a n
(*$T
(floor_div 3n 5n = 0n)
(floor_div 5n 5n = 1n)
(floor_div 20n 5n = 4n)
(floor_div 12n 5n = 2n)
(floor_div 0n 5n = 0n)
(floor_div (-1n) 5n = -1n)
(floor_div (-5n) 5n = -1n)
(floor_div (-12n) 5n = -3n)
(floor_div 0n (-5n) = 0n)
(floor_div 3n (-5n) = -1n)
(floor_div 5n (-5n) = -1n)
(floor_div 9n (-5n) = -2n)
(floor_div 20n (-5n) = -4n)
(floor_div (-2n) (-5n) = 0n)
(floor_div (-8n) (-5n) = 1n)
(floor_div (-35n) (-5n) = 7n)
try ignore (floor_div 12n 0n); false with Division_by_zero -> true
try ignore (floor_div (-12n) 0n); false with Division_by_zero -> true
*)
(*$Q
(Q.pair (Q.map of_int Q.small_signed_int) (Q.map of_int Q.small_nat)) \
(fun (n, m) -> let m = m + 1n in \
floor_div n m = of_float @@ floor (to_float n /. to_float m))
(Q.pair (Q.map of_int Q.small_signed_int) (Q.map of_int Q.small_nat)) \
(fun (n, m) -> let m = m + 1n in \
floor_div n (-m) = of_float @@ floor (to_float n /. to_float (-m)))
*)
type 'a printer = Format.formatter -> 'a -> unit
type 'a random_gen = Random.State.t -> 'a
type 'a iter = ('a -> unit) -> unit
let range i j yield =
let rec up i j yield =
if equal i j then yield i
else (
yield i;
up (add i 1n) j yield
)
and down i j yield =
if equal i j then yield i
else (
yield i;
down (sub i 1n) j yield
)
in
if compare i j <= 0 then up i j yield else down i j yield
(*$= & ~printer:Q.Print.(list to_string)
[0n;1n;2n;3n;4n;5n] (range 0n 5n |> Iter.to_list)
[0n] (range 0n 0n |> Iter.to_list)
[5n;4n;3n;2n] (range 5n 2n |> Iter.to_list)
*)
let range' i j yield =
if compare i j < 0 then range i (sub j 1n) yield
else if equal i j then ()
else range i (add j 1n) yield
let range_by ~step i j yield =
let rec range i j yield =
if equal i j then yield i
else (
yield i;
range (add i step) j yield
)
in
if equal step 0n then
raise (Invalid_argument "CCNativeint.range_by")
else if (if compare step 0n > 0 then compare i j > 0 else compare i j < 0) then ()
else range i (add (mul (div (sub j i) step) step) i) yield
(* note: the last test checks that no error occurs due to overflows. *)
(*$= & ~printer:Q.Print.(list to_string)
[0n] (range_by ~step:1n 0n 0n |> Iter.to_list)
[] (range_by ~step:1n 5n 0n |> Iter.to_list)
[] (range_by ~step:2n 1n 0n |> Iter.to_list)
[0n;2n;4n] (range_by ~step:2n 0n 4n |> Iter.to_list)
[0n;2n;4n] (range_by ~step:2n 0n 5n |> Iter.to_list)
[0n] (range_by ~step:(neg 1n) 0n 0n |> Iter.to_list)
[] (range_by ~step:(neg 1n) 0n 5n |> Iter.to_list)
[] (range_by ~step:(neg 2n) 0n 1n |> Iter.to_list)
[5n;3n;1n] (range_by ~step:(neg 2n) 5n 1n |> Iter.to_list)
[5n;3n;1n] (range_by ~step:(neg 2n) 5n 0n |> Iter.to_list)
[0n] (range_by ~step:max_int 0n 2n |> Iter.to_list)
*)
(*$Q
Q.(pair (map of_int small_int) (map of_int small_int)) (fun (i,j) -> \
let i = min i j and j = max i j in \
CCList.equal CCNativeint.equal \
(CCNativeint.range_by ~step:1n i j |> Iter.to_list) \
(CCNativeint.range i j |> Iter.to_list) )
*)
let random n st = Random.State.nativeint st n
let random_small = random 100n
let random_range i j st = add i (random (sub j i) st)
(** {2 Conversion} *)
let of_string_exn = of_string
let of_string x = try Some (of_string_exn x) with Failure _ -> None
let of_string_opt = of_string
let most_significant_bit =
logxor (neg 1n) (shift_right_logical (neg 1n) 1)
type output = char -> unit
(* abstract printer *)
let to_binary_gen (out:output) n =
let n = if compare n 0n <0 then (out '-'; neg n) else n in
out '0'; out 'b';
let rec loop started bit n =
if equal bit 0n then (
if not started then out '0'
) else (
let b = logand n bit in
if equal b 0n then (
if started then out '0';
loop started (shift_right_logical bit 1) n
) else (
out '1';
loop true (shift_right_logical bit 1) n
)
)
in
loop false most_significant_bit n
let to_string_binary n =
let buf = Buffer.create 16 in
to_binary_gen (Buffer.add_char buf) n;
Buffer.contents buf
(*$= & ~printer:CCFun.id
"0b111" (to_string_binary 7n)
"-0b111" (to_string_binary (-7n))
"0b0" (to_string_binary 0n)
*)
(** {2 Printing} *)
let pp out n = Format.pp_print_string out (to_string n)
let pp_binary out n =
to_binary_gen (Format.pp_print_char out) n
(** {2 Infix Operators} *)
module Infix = struct module Infix = struct
let (+) = add let (+) = add
@ -14,6 +208,12 @@ module Infix = struct
let (/) = div let (/) = div
let ( ** ) = pow
let (--) = range
let (--^) = range'
let (mod) = rem let (mod) = rem
let (land) = logand let (land) = logand
@ -39,12 +239,3 @@ module Infix = struct
let (>=) = Stdlib.(>=) let (>=) = Stdlib.(>=)
end end
include Infix include Infix
let hash x = Stdlib.abs (to_int x)
(** {2 Conversion} *)
let of_string_exn = of_string
let of_string x = try Some (of_string_exn x) with Failure _ -> None
let of_string_opt = of_string

View file

@ -18,42 +18,159 @@
include module type of struct include Nativeint end include module type of struct include Nativeint end
val min : t -> t -> t
(** [min x y] returns the minimum of the two integers [x] and [y].
@since NEXT_RELEASE *)
val max : t -> t -> t
(** [max x y] returns the maximum of the two integers [x] and [y].
@since NEXT_RELEASE *)
val hash : t -> int
(** [hash x] computes the hash of [x].
Like {!Stdlib.abs (to_int x)}. *)
val sign : t -> int
(** [sign x] return [0] if [x = 0], [-1] if [x < 0] and [1] if [x > 0].
Same as [compare x zero].
@since NEXT_RELEASE*)
val pow : t -> t -> t
(** [pow base exponent] returns [base] raised to the power of [exponent].
[pow x y = x^y] for positive integers [x] and [y].
Raises [Invalid_argument] if [x = y = 0] or [y] < 0.
@since 0.11 *)
val floor_div : t -> t -> t
(** [floor_div x n] is integer division rounding towards negative infinity.
It satisfies [x = m * floor_div x n + rem x n].
@since NEXT_RELEASE *)
type 'a printer = Format.formatter -> 'a -> unit
type 'a random_gen = Random.State.t -> 'a
type 'a iter = ('a -> unit) -> unit
val range_by : step:t -> t -> t -> t iter
(** [range_by ~step i j] iterates on integers from [i] to [j] included,
where the difference between successive elements is [step].
Use a negative [step] for a decreasing list.
@raise Invalid_argument if [step=0].
@since NEXT_RELEASE *)
val range : t -> t -> t iter
(** [range i j] iterates on integers from [i] to [j] included . It works
both for decreasing and increasing ranges.
@since NEXT_RELEASE *)
val range' : t -> t -> t iter
(** [range' i j] is like {!range} but the second bound [j] is excluded.
For instance [range' 0 5 = Iter.of_list [0;1;2;3;4]].
@since NEXT_RELEASE *)
val random : t -> t random_gen
val random_small : t random_gen
val random_range : t -> t -> t random_gen
(** {2 Conversion} *)
val of_string : string -> t option
(** [of_string s] is the safe version of {!of_string_exn}.
Like {!of_string_exn}, but return [None] instead of raising. *)
val of_string_opt : string -> t option
(** [of_string_opt s] is an alias to {!of_string}. *)
val of_string_exn : string -> t
(** [of_string_exn s] converts the given string [s] into a native integer.
Alias to {!Nativeint.of_string}.
Convert the given string to a native integer.
The string is read in decimal (by default, or if the string
begins with [0u]) or in hexadecimal, octal or binary if the
string begins with [0x], [0o] or [0b] respectively.
The [0u] prefix reads the input as an unsigned integer in the range
[[0, 2*CCNativeint.max_int+1]]. If the input exceeds {!CCNativeint.max_int}
it is converted to the signed integer
[CCInt64.min_int + input - CCNativeint.max_int - 1].
Raise [Failure "Nativeint.of_string"] if the given string is not
a valid representation of an integer, or if the integer represented
exceeds the range of integers representable in type [nativeint]. *)
val to_string_binary : t -> string
(** [to_string_binary x] returns the string representation of the integer [x], in binary.
@since NEXT_RELEASE *)
(** {2 Printing} *)
val pp : t printer
(** [pp ppf x] prints the integer [x] on [ppf].
@since NEXT_RELEASE *)
val pp_binary : t printer
(** [pp_binary ppf x] prints [x] on [ppf].
Print as "0b00101010".
@since NEXT_RELEASE *)
(** {2 Infix Operators} *)
module Infix : sig module Infix : sig
val ( + ) : t -> t -> t val ( + ) : t -> t -> t
(** Addition. *) (** [x + y] is the sum of [x] and [y].
Addition. *)
val ( - ) : t -> t -> t val ( - ) : t -> t -> t
(** Subtraction. *) (** [x - y] is the difference of [x] and [y].
Subtraction. *)
val ( ~- ) : t -> t val ( ~- ) : t -> t
(** Unary negation. *) (** [~- x] is the negation of [x].
Unary negation. *)
val ( * ) : t -> t -> t val ( * ) : t -> t -> t
(** Multiplication. *) (** [ x * y] is the product of [x] and [y].
Multiplication. *)
val ( / ) : t -> t -> t val ( / ) : t -> t -> t
(** Integer division. Raise [Division_by_zero] if the second (** [x / y] is the integer quotient of [x] and [y].
argument is zero. This division rounds the real quotient of Integer division. Raise [Division_by_zero] if the second
argument [y] is zero. This division rounds the real quotient of
its arguments towards zero, as specified for {!Stdlib.(/)}. *) its arguments towards zero, as specified for {!Stdlib.(/)}. *)
val ( mod ) : t -> t -> t val ( mod ) : t -> t -> t
(** [x mod y ] is the integer remainder. (** [x mod y] is the integer remainder of [x / y].
If [y <> zero], the result of [x mod y] satisfies the following properties: If [y <> zero], the result of [x mod y] satisfies the following properties:
[zero <= x mod y < abs y] and [zero <= x mod y < abs y] and
[x = ((x / y) * y) + (x mod y)]. [x = ((x / y) * y) + (x mod y)].
If [y = 0], [x mod y] raises [Division_by_zero]. *) If [y = 0], [x mod y] raises [Division_by_zero]. *)
val ( ** ) : t -> t -> t
(** Alias to {!pow}
@since NEXT_RELEASE *)
val (--) : t -> t -> t iter
(** Alias to {!range}.
@since NEXT_RELEASE *)
val (--^) : t -> t -> t iter
(** Alias to {!range'}.
@since NEXT_RELEASE *)
val ( land ) : t -> t -> t val ( land ) : t -> t -> t
(** Bitwise logical and. *) (** [x land y] is the bitwise logical and of [x] and [y]. *)
val ( lor ) : t -> t -> t val ( lor ) : t -> t -> t
(** Bitwise logical or. *) (** [x lor y] is the bitwise logical or of [x] and [y]. *)
val ( lxor ) : t -> t -> t val ( lxor ) : t -> t -> t
(** Bitwise logical exclusive or. *) (** [x lxor y] is the bitwise logical exclusive or of [x] and [y]. *)
val lnot : t -> t val lnot : t -> t
(** Bitwise logical negation. *) (** [lnot x] is the bitwise logical negation of [x] (the bits of [x] are inverted). *)
val ( lsl ) : t -> int -> t val ( lsl ) : t -> int -> t
(** [ x lsl y] shifts [x] to the left by [y] bits. (** [ x lsl y] shifts [x] to the left by [y] bits.
@ -80,30 +197,4 @@ module Infix : sig
val (<) : t -> t -> bool val (<) : t -> t -> bool
end end
val hash : t -> int include module type of Infix
(** Like {!Stdlib.abs (to_int x)}. *)
(** {2 Conversion} *)
val of_string_exn : string -> t
(** Alias to {!Nativeint.of_string}.
Convert the given string to a native integer.
The string is read in decimal (by default, or if the string
begins with [0u]) or in hexadecimal, octal or binary if the
string begins with [0x], [0o] or [0b] respectively.
The [0u] prefix reads the input as an unsigned integer in the range
[[0, 2*CCNativeint.max_int+1]]. If the input exceeds {!CCNativeint.max_int}
it is converted to the signed integer
[CCInt64.min_int + input - CCNativeint.max_int - 1].
Raise [Failure "Nativeint.of_string"] if the given string is not
a valid representation of an integer, or if the integer represented
exceeds the range of integers representable in type [nativeint]. *)
val of_string : string -> t option
(** Safe version of {!of_string_exn}.
Like {!of_string_exn}, but return [None] instead of raising. *)
val of_string_opt : string -> t option
(** Alias to {!of_string}. *)