feat: add Flat_tbl to containers-data

experimental Robin-hood hashtable
This commit is contained in:
Simon Cruanes 2021-04-02 00:49:38 -04:00
parent da2abe6e60
commit bee90ee6ea
3 changed files with 607 additions and 0 deletions

View file

@ -660,6 +660,16 @@ module Tbl = struct
let module U = MUT_OF_IMMUT(T) in
(module U : MUT with type key = a)
let flat_tbl : type a. a key_type -> (module MUT with type key = a)
= fun key ->
let (module Key), name = arg_make key in
let module T = struct
let name = sprintf "flat_tbl(%s)" name
include Flat_tbl.Make(Key)
let add = replace
end in
(module T)
let wbt : type a. a key_type -> (module MUT with type key = a)
= fun k ->
let (module K), name = arg_make k in
@ -726,6 +736,7 @@ module Tbl = struct
[ hashtbl_make Int
; hashtbl
; persistent_hashtbl Int
; flat_tbl Int
(* ; poly_hashtbl *)
; map Int
; wbt Int

536
src/data/flat_tbl.ml Normal file
View file

@ -0,0 +1,536 @@
(* Another attempt at making a fast, flat Hash table.
https://www.sebastiansylvan.com/post/robin-hood-hashing-should-be-your-default-hash-table-implementation/
deletion:
https://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/
*)
type 'a iter = ('a -> unit) -> unit
module type S = sig
type key
type 'a t
val create : int -> 'a t
(** Create a hashtable. *)
val copy : 'a t -> 'a t
val clear : 'a t -> unit
(** Clear the content of the hashtable *)
val find : 'a t -> key -> 'a
(** Find the value for this key, or
@raise Not_found if not present *)
val find_opt : 'a t -> key -> 'a option
(** Find the value for this key *)
val replace : 'a t -> key -> 'a -> unit
(** Add/replace the binding for this key. O(1) amortized. *)
val remove : 'a t -> key -> unit
(** Remove the binding for this key, if any *)
val length : 'a t -> int
(** Number of bindings in the table *)
val mem : 'a t -> key -> bool
(** Is the key present in the hashtable? *)
val iter : (key -> 'a -> unit) -> 'a t -> unit
(** Iterate on bindings *)
val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
(** Fold on bindings *)
val to_iter : 'a t -> (key * 'a) iter
val add_iter : 'a t -> (key * 'a) iter -> unit
val of_iter : (key * 'a) iter -> 'a t
val to_list : 'a t -> (key * 'a) list
val add_list : 'a t -> (key * 'a) list -> unit
val of_list : (key * 'a) list -> 'a t
val stats : 'a t -> int * int * int * int * int * int
(** Cf Weak.S *)
end
module Make(H : Hashtbl.HashedType) = struct
type key = H.t
(* we cannot flatten further than that, so we'll just pay for the
additional pointer anyway. *)
type 'a slot =
| Empty
| Used of key * 'a
let max_load = 0.8
let probe_dist_n_bits = 7 (* store probe distance on <n> bits *)
type 'a t = {
mutable meta: int array;
(* [hash | probe_distance[0..10] | present[1]]
for key at index [i] *)
mutable slots: 'a slot array; (* slot for index [i] *)
mutable size : int;
(* TODO: [max_dist: int], so we can stop loopup early? *)
}
let create size : _ t =
let size = max 8 size in
{ slots = Array.make size Empty;
meta = Array.make size 0;
size = 0;
}
let copy self =
{ slots = Array.copy self.slots;
meta = Array.copy self.meta;
size = self.size;
}
(** clear the table, by resetting all states to Empty *)
let clear self =
let {slots; meta; size=_} = self in
Array.fill slots 0 (Array.length slots) Empty;
Array.fill meta 0 (Array.length meta ) 0;
self.size <- 0
(* Index of slot, for i-th probing starting from hash [h] in
a table of length [n] *)
let[@inline] addr_ h n dist = (h + dist) mod n
(* normalize h by removing bits that will not fit in storage *)
let[@inline] normalize_hash_ h : int =
(h lsl (1+probe_dist_n_bits)) lsr (1+probe_dist_n_bits)
(** [mk_meta_ hash dist] make new metadata *)
let mk_meta_ h dist : int =
let dist_mask = (1 lsl probe_dist_n_bits)-1 in
let dist = dist land dist_mask in
(* LSB=1 to indicate presence *)
(((h lsl probe_dist_n_bits) lor dist) lsl 1) lor 1
(* hash of metadata (truncated) *)
let[@inline] hash_of_meta_ m : int =
m lsr (probe_dist_n_bits+1)
(* probe distance of metadata (truncated) *)
let[@inline] dist_of_meta_ m : int =
(m lsr 1) land ((1 lsl probe_dist_n_bits)-1)
(* presence bit of metadata *)
let[@inline] presence_meta_ m : bool =
(m land 1) == 1
(* Insert [k -> v] in [self], starting with the hash [h].
Does not modify the size. *)
let insert_ (self:_ t) h k v : unit =
let {slots; meta; size=_} = self in
let n = Array.length slots in
assert (n=Array.length meta);
(* lookup an empty slot to insert the key->value in. *)
let rec insert_rec_ h k v dist =
let j = addr_ h n dist in
let m_j = Array.unsafe_get meta j in
let dist_j = dist_of_meta_ m_j in
let hash_j = hash_of_meta_ m_j in
if not (presence_meta_ m_j) then (
(* empty slot *)
let m = mk_meta_ h dist in
meta.(j) <- m;
slots.(j) <- Used (k, v);
) else if h <> hash_j && dist_j >= dist then (
(* different slot and hash (hence, key): try next slot *)
insert_rec_ h k v (dist+1)
) else (
let k_j, v_j =
match Array.unsafe_get slots j with
| Empty -> assert false
| Used (k,v) -> k, v
in
if H.equal k k_j then (
(* replace slot, same key *)
slots.(j) <- Used (k, v);
) else if dist_j < dist then (
(* displace this element *)
let m = mk_meta_ h dist in
meta.(j) <- m;
slots.(j) <- Used (k, v);
insert_rec_ hash_j k_j v_j dist_j
) else (
(* try next slot *)
insert_rec_ h k v (dist+1)
)
)
in
insert_rec_ h k v 0
(* Resize the array, by inserting its content into twice as large an array *)
let resize (self:_ t) : unit =
let {slots=old_slots; meta=old_meta; size=_} = self in
let new_size =
let n = Array.length old_slots in
let n = n + n lsr 2 in (* ×1.5 *)
min n Sys.max_array_length
in
if new_size <= Array.length old_slots then failwith "flat_tbl: cannot resize further";
self.slots <- Array.make new_size Empty;
self.meta <- Array.make new_size 0;
(* insert elements into new table *)
Array.iteri
(fun i slot -> match slot with
| Empty -> ()
| Used (k,v) ->
let m = Array.unsafe_get old_meta i in
let h = hash_of_meta_ m in
insert_ self h k v)
old_slots;
()
(* Lookup [key] in the table *)
let find_opt self k =
let {slots; meta; size=_} = self in
let n = Array.length slots in
let h = normalize_hash_ (H.hash k) in
let slots = self.slots in
let[@unroll 2] rec find_rec_ dist =
assert (dist < n); (* load factor would be 1 *)
let j = addr_ h n dist in
let m_j = Array.unsafe_get meta j in
if not (presence_meta_ m_j) then (
None (* met empty slot *)
) else (
(* TODO: if we store max_probe_dist, use this for early
termination
let dist_j = dist_of_meta_ m_j in
if dist_j > max_probe_dist then raise Not_found
*)
let h_j = hash_of_meta_ m_j in
if h <> h_j then (
(* different hash *)
find_rec_ (dist+1)
) else (
match Array.unsafe_get slots j with
| Used (k2, v) ->
if H.equal k k2 then Some v
else (
(* different key *)
find_rec_ (dist+1)
)
| Empty -> assert false
)
)
in
(* try a direct hit first *)
begin match Array.unsafe_get slots (addr_ h n 0) with
| Empty -> None
| Used (k2, v) when H.equal k k2 -> Some v
| _ -> find_rec_ 1
end
let find self k =
match find_opt self k with
| Some x -> x
| None -> raise Not_found
(** put [key] -> [value] in the hashtable *)
let replace self k v : unit =
(* need to resize? *)
let load = float_of_int self.size /. float_of_int (Array.length self.slots) in
if load > max_load then (
resize self;
);
let h = normalize_hash_ (H.hash k) in
self.size <- 1 + self.size;
insert_ self h k v
(* Remove the key from the table. We use backward shift deletion
(see https://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/ )
to keep probe_distance low, instead of using tombstones. *)
let remove self k : unit =
let {slots; meta; size=_} = self in
let n = Array.length slots in
let h = normalize_hash_ (H.hash k) in
(* given that [i] is empty, and [i_succ = (i+1) mod n],
see if we can shift the element at [i_succ] to the left
to decrease its probe count. *)
let rec backward_shift_ i i_succ : unit =
let m = Array.unsafe_get meta i_succ in
if presence_meta_ m then (
let dist = dist_of_meta_ m in
if dist > 0 then (
let slot = Array.unsafe_get slots i_succ in
assert (slot != Empty);
let m = mk_meta_ (hash_of_meta_ m) (dist-1) in
meta.(i) <- m;
slots.(i) <- slot;
meta.(i_succ) <- 0; (* cleanup i_succ *)
slots.(i_succ) <- Empty;
backward_shift_ i_succ ((i_succ + 1) mod n)
)
)
in
let rec find_rec_ dist =
assert (dist<n);
let j = addr_ h n dist in
let m_j = Array.unsafe_get meta j in
let hash_j = hash_of_meta_ m_j in
if not (presence_meta_ m_j) then () (* early exit, key not present *)
else if h <> hash_j then (
find_rec_ (dist+1) (* go further *)
) else (
let k_j = match Array.unsafe_get slots j with
| Empty -> assert false
| Used (k, _) -> k
in
if H.equal k k_j then (
(* found element, remove it *)
slots.(j) <- Empty;
meta.(j) <- 0;
self.size <- self.size - 1;
backward_shift_ j ((j+1) mod n); (* shift slots that come just next *)
) else (
find_rec_ (dist+1)
)
)
in
if self.size > 0 then (
find_rec_ 0
)
(* size of the table *)
let[@inline] length t = t.size
(* Is the key member of the table? *)
let mem self k =
match find_opt self k with
| Some _ -> true
| None -> false
(* Iterate on key -> value pairs *)
let iter f self =
let slots = self.slots in
for i = 0 to Array.length slots - 1 do
match Array.unsafe_get slots i with
| Used (k, v) -> f k v
| _ -> ()
done
(* Fold on key -> value pairs *)
let fold f self acc =
Array.fold_left
(fun acc sl -> match sl with
| Empty -> acc
| Used (k,v) -> f k v acc)
acc self.slots
let to_iter t yield =
iter (fun k v -> yield (k, v)) t
let add_iter t seq =
seq (fun (k,v) -> replace t k v)
let of_iter seq =
let self = create 32 in
add_iter self seq;
self
let to_list self =
if length self > 0 then (
fold (fun k v l -> (k,v)::l) self []
) else []
let add_list self l =
List.iter (fun (k,v) -> replace self k v) l
let of_list l =
let self = create 32 in
add_list self l;
self
(* Statistics on the table *)
let stats t = (Array.length t.slots, t.size, t.size, 0, 0, 1)
end
(*$inject
module T = Flat_tbl.Make(CCInt)
let sort l = List.sort compare l
let ppt_bool out tbl = CCFormat.(Dump.(list @@ pair int bool)) out (T.to_list tbl)
*)
(*$= & ~cmp:(fun a b -> sort a=sort b) ~printer:Q.Print.(list (pair int bool))
[] T.(to_list @@ of_list [])
[1,true; 2,false; 3,true] T.(to_list@@ of_list [2,false;3,true;1,true])
*)
(*$T
(let tbl=T.create 32 in T.replace tbl 1 true; T.replace tbl 3 false; T.find tbl 1)
(not (let tbl=T.create 32 in T.replace tbl 1 true; T.replace tbl 3 false; T.find tbl 3))
(try ignore(let tbl=T.create 32 in T.replace tbl 1 true; T.replace tbl 3 false; T.find tbl 4); false \
with Not_found -> true)
*)
(*$R
let tbl = T.create 32 in
T.replace tbl (-50) false;
T.remove tbl (-50);
assert_equal ~printer:(Q.Print.int) 0 (T.length tbl);
assert_equal ~printer:(Q.Print.(option bool)) None (T.find_opt tbl (-50));
*)
(*$R
let tbl = T.create 32 in
T.replace tbl 7 false;
T.replace tbl 7 true;
assert_equal ~printer:Q.Print.(list (pair int bool)) [7, true] (T.to_list tbl);
*)
(*$inject
type op =
| Insert of int * bool
| Remove of int
| Get of int
| Clear
module IntSet = CCSet.Make(CCInt)
let genop keys : op Q.Gen.t =
Q.Gen.(frequency @@ List.flatten [
(if IntSet.is_empty keys then [] else [
(3, oneofl (IntSet.to_list keys) >|= fun k->Remove k);
(4, oneofl (IntSet.to_list keys) >|= fun k->Get k);
]);
[6, map2 (fun k v -> Insert (k,v)) (-100 -- 200) bool];
[1, return Clear];
])
let genops size : _ Q.Gen.t =
let rec loop keys l size =
let open Q.Gen in
if size<=0 then return l
else (
genop keys >>= fun op ->
let new_keys = match op with
| Insert(k,_) -> IntSet.add k keys
| Remove k -> IntSet.remove k keys
| Get _ | Clear -> keys
in
loop new_keys (op :: l) (size-1)
)
in
loop IntSet.empty [] size
let shrink = Q.Shrink.list
let to_str = function
| Insert (k,v) -> Printf.sprintf "Insert(%d,%b)" k v
| Remove k -> Printf.sprintf "Remove(%d)" k
| Get k -> Printf.sprintf "Get(%d)" k
| Clear -> "clear"
let arb_ops =
Q.make ~shrink ~print:(Q.Print.list to_str)
Q.Gen.((0 -- 700) >>= genops)
module Int_tbl = CCHashtbl.Make(CCInt)
let exec_op tbl op =
match op with
| Insert (k,v) -> T.replace tbl k v;
| Remove k -> T.remove tbl k;
| Get _k -> ()
| Clear -> T.clear tbl
*)
(*$QR & ~count:800 ~long_factor:10
Q.(arb_ops) (fun ops ->
let module Fmt = CCFormat in
let tbl = T.create 32 in
let tbl_r = Int_tbl.create 32 in
let check_same() =
if sort (T.to_list tbl) <> sort (Int_tbl.to_list tbl_r) then (
Q.Test.fail_reportf "mismatch:@ tbl=%a,@ tbl_ref=%a"
ppt_bool tbl (Fmt.Dump.(list (pair int bool))) (Int_tbl.to_list tbl_r)
)
in
List.iter
(fun op ->
begin match op with
| Insert (k,v) ->
T.replace tbl k v;
Int_tbl.replace tbl_r k v
| Remove k ->
T.remove tbl k;
Int_tbl.remove tbl_r k;
| Get k ->
(try
let v = T.find tbl k in
let v' = Int_tbl.find tbl_r k in
if v<>v' then (
Q.Test.fail_reportf "mismatch on %d:@ tbl=%a,@ tbl_ref=%a"
k
ppt_bool tbl
(Fmt.Dump.(list (pair int bool))) (Int_tbl.to_list tbl_r)
)
with Not_found -> Q.assume false)
| Clear ->
T.clear tbl;
Int_tbl.clear tbl_r;
end;
check_same())
ops;
check_same();
true
)
*)
(*$R
let ops = [Insert(33,true); Insert(-63,false); Insert(-30,false); Remove(-63)] in
let tbl = T.create 32 in
List.iter (exec_op tbl) ops;
assert_equal ~printer:Q.Print.(list (pair int bool))
[(-30),false; 33,true] (sort (T.to_list tbl))
*)

60
src/data/flat_tbl.mli Normal file
View file

@ -0,0 +1,60 @@
(** {1 Open addressing hashtable, with linear probing.} *)
type 'a iter = ('a -> unit) -> unit
module type S = sig
type key
type 'a t
val create : int -> 'a t
(** Create a hashtable. *)
val copy : 'a t -> 'a t
val clear : 'a t -> unit
(** Clear the content of the hashtable *)
val find : 'a t -> key -> 'a
(** Find the value for this key, or
@raise Not_found if not present *)
val find_opt : 'a t -> key -> 'a option
(** Find the value for this key *)
val replace : 'a t -> key -> 'a -> unit
(** Add/replace the binding for this key. O(1) amortized. *)
val remove : 'a t -> key -> unit
(** Remove the binding for this key, if any *)
val length : 'a t -> int
(** Number of bindings in the table *)
val mem : 'a t -> key -> bool
(** Is the key present in the hashtable? *)
val iter : (key -> 'a -> unit) -> 'a t -> unit
(** Iterate on bindings *)
val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
(** Fold on bindings *)
val to_iter : 'a t -> (key * 'a) iter
val add_iter : 'a t -> (key * 'a) iter -> unit
val of_iter : (key * 'a) iter -> 'a t
val to_list : 'a t -> (key * 'a) list
val add_list : 'a t -> (key * 'a) list -> unit
val of_list : (key * 'a) list -> 'a t
val stats : 'a t -> int * int * int * int * int * int
(** Cf Weak.S *)
end
(** Create a hashtable *)
module Make(H : Hashtbl.HashedType) : S with type key = H.t