mirror of
https://github.com/c-cube/ocaml-containers.git
synced 2025-12-06 11:15:31 -05:00
add containers.data.CCGraph:
- a simple representation of polymorphic graphs - a collection of basic algorithms
This commit is contained in:
parent
fb8e9078a3
commit
d7b15ca81e
3 changed files with 344 additions and 1 deletions
2
_oasis
2
_oasis
|
|
@ -83,7 +83,7 @@ Library "containers_data"
|
||||||
Modules: CCMultiMap, CCMultiSet, CCTrie, CCFlatHashtbl, CCCache,
|
Modules: CCMultiMap, CCMultiSet, CCTrie, CCFlatHashtbl, CCCache,
|
||||||
CCPersistentHashtbl, CCDeque, CCFQueue, CCBV, CCMixtbl,
|
CCPersistentHashtbl, CCDeque, CCFQueue, CCBV, CCMixtbl,
|
||||||
CCMixmap, CCRingBuffer, CCIntMap, CCPersistentArray,
|
CCMixmap, CCRingBuffer, CCIntMap, CCPersistentArray,
|
||||||
CCMixset, CCHashconsedSet
|
CCMixset, CCHashconsedSet, CCGraph
|
||||||
BuildDepends: bytes
|
BuildDepends: bytes
|
||||||
FindlibParent: containers
|
FindlibParent: containers
|
||||||
FindlibName: data
|
FindlibName: data
|
||||||
|
|
|
||||||
212
src/data/CCGraph.ml
Normal file
212
src/data/CCGraph.ml
Normal file
|
|
@ -0,0 +1,212 @@
|
||||||
|
|
||||||
|
(*
|
||||||
|
copyright (c) 2013-2015, simon cruanes
|
||||||
|
all rights reserved.
|
||||||
|
|
||||||
|
redistribution and use in source and binary forms, with or without
|
||||||
|
modification, are permitted provided that the following conditions are met:
|
||||||
|
|
||||||
|
redistributions of source code must retain the above copyright notice, this
|
||||||
|
list of conditions and the following disclaimer. redistributions in binary
|
||||||
|
form must reproduce the above copyright notice, this list of conditions and the
|
||||||
|
following disclaimer in the documentation and/or other materials provided with
|
||||||
|
the distribution.
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||||
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||||
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||||
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||||
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||||
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||||
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||||
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||||
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||||
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
*)
|
||||||
|
|
||||||
|
type 'a sequence = ('a -> unit) -> unit
|
||||||
|
|
||||||
|
type 'a sequence_once = 'a sequence
|
||||||
|
|
||||||
|
exception Sequence_once
|
||||||
|
|
||||||
|
module Seq = struct
|
||||||
|
type 'a t = 'a sequence
|
||||||
|
let return x k = k x
|
||||||
|
let (>>=) a f k = a (fun x -> f x k)
|
||||||
|
let map f a k = a (fun x -> k (f x))
|
||||||
|
let iter f a = a f
|
||||||
|
let fold f acc a =
|
||||||
|
let acc = ref acc in
|
||||||
|
a (fun x -> acc := f !acc x);
|
||||||
|
!acc
|
||||||
|
end
|
||||||
|
|
||||||
|
(** {2 Interfaces for graphs} *)
|
||||||
|
|
||||||
|
(** Directed graph with vertices of type ['v] and edges of type [e'] *)
|
||||||
|
type ('v, 'e) t = {
|
||||||
|
children: 'v -> 'e sequence;
|
||||||
|
origin: 'e -> 'v;
|
||||||
|
dest: 'e -> 'v;
|
||||||
|
}
|
||||||
|
|
||||||
|
(** Mutable bitset for values of type ['v] *)
|
||||||
|
type 'v tag_set = {
|
||||||
|
get_tag: 'v -> bool;
|
||||||
|
set_tag: 'v -> unit; (** Set tag to [true] for the given element *)
|
||||||
|
}
|
||||||
|
|
||||||
|
(** Mutable table with keys ['k] and values ['a] *)
|
||||||
|
type ('k, 'a) table = {
|
||||||
|
mem: 'k -> bool;
|
||||||
|
find: 'k -> 'a; (** @raise Not_found *)
|
||||||
|
add: 'k -> 'a -> unit; (** Erases previous binding *)
|
||||||
|
size: unit -> int;
|
||||||
|
}
|
||||||
|
|
||||||
|
(** Mutable set *)
|
||||||
|
type 'a set = ('a, unit) table
|
||||||
|
|
||||||
|
let mk_table (type k) ?(eq=(=)) ?(hash=Hashtbl.hash) size =
|
||||||
|
let module H = Hashtbl.Make(struct
|
||||||
|
type t = k
|
||||||
|
let equal = eq
|
||||||
|
let hash = hash
|
||||||
|
end) in
|
||||||
|
let tbl = H.create size in
|
||||||
|
{ mem=(fun k -> H.mem tbl k)
|
||||||
|
; find=(fun k -> H.find tbl k)
|
||||||
|
; add=(fun k v -> H.replace tbl k v)
|
||||||
|
; size=(fun () -> H.length tbl)
|
||||||
|
}
|
||||||
|
|
||||||
|
(** {2 Traversals} *)
|
||||||
|
|
||||||
|
type 'a bag = {
|
||||||
|
push: 'a -> unit;
|
||||||
|
is_empty: unit -> bool;
|
||||||
|
pop: unit -> 'a; (** raises some exception is empty *)
|
||||||
|
}
|
||||||
|
|
||||||
|
let mk_queue () =
|
||||||
|
let q = Queue.create() in
|
||||||
|
{ push=(fun x -> Queue.push x q)
|
||||||
|
; is_empty=(fun () -> Queue.is_empty q)
|
||||||
|
; pop=(fun () -> Queue.pop q);
|
||||||
|
}
|
||||||
|
|
||||||
|
let mk_stack() =
|
||||||
|
let s = Stack.create() in
|
||||||
|
{ push=(fun x -> Stack.push x s)
|
||||||
|
; is_empty=(fun () -> Stack.is_empty s)
|
||||||
|
; pop=(fun () -> Stack.pop s);
|
||||||
|
}
|
||||||
|
|
||||||
|
(** Implementation from http://en.wikipedia.org/wiki/Skew_heap *)
|
||||||
|
module Heap = struct
|
||||||
|
type 'a t =
|
||||||
|
| E
|
||||||
|
| N of 'a * 'a t * 'a t
|
||||||
|
|
||||||
|
let is_empty = function
|
||||||
|
| E -> true
|
||||||
|
| N _ -> false
|
||||||
|
|
||||||
|
let rec union ~leq t1 t2 = match t1, t2 with
|
||||||
|
| E, _ -> t2
|
||||||
|
| _, E -> t1
|
||||||
|
| N (x1, l1, r1), N (x2, l2, r2) ->
|
||||||
|
if leq x1 x2
|
||||||
|
then N (x1, union ~leq t2 r1, l1)
|
||||||
|
else N (x2, union ~leq t1 r2, l2)
|
||||||
|
|
||||||
|
let insert ~leq h x = union ~leq (N (x, E, E)) h
|
||||||
|
|
||||||
|
let pop ~leq h = match h with
|
||||||
|
| E -> raise Not_found
|
||||||
|
| N (x, l, r) ->
|
||||||
|
x, union ~leq l r
|
||||||
|
end
|
||||||
|
|
||||||
|
let mk_heap ~leq =
|
||||||
|
let t = ref Heap.E in
|
||||||
|
{ push=(fun x -> t := Heap.insert ~leq !t x)
|
||||||
|
; is_empty=(fun () -> Heap.is_empty !t)
|
||||||
|
; pop=(fun () ->
|
||||||
|
let x, h = Heap.pop ~leq !t in
|
||||||
|
t := h;
|
||||||
|
x
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
let traverse ?tbl:(mk_tbl=mk_table ?eq:None ?hash:None) ~bag:mk_bag ~graph seq =
|
||||||
|
fun k ->
|
||||||
|
let bag = mk_bag() in
|
||||||
|
Seq.iter bag.push seq;
|
||||||
|
let tbl = mk_tbl 128 in
|
||||||
|
let bag = mk_bag () in
|
||||||
|
while not (bag.is_empty ()) do
|
||||||
|
let x = bag.pop () in
|
||||||
|
if not (tbl.mem x) then (
|
||||||
|
k x;
|
||||||
|
tbl.add x ();
|
||||||
|
Seq.iter
|
||||||
|
(fun e -> bag.push (graph.dest e))
|
||||||
|
(graph.children x)
|
||||||
|
)
|
||||||
|
done
|
||||||
|
|
||||||
|
let traverse_tag ~tags ~bag ~graph seq =
|
||||||
|
let first = ref true in
|
||||||
|
fun k ->
|
||||||
|
(* ensure linearity *)
|
||||||
|
if !first then first := false else raise Sequence_once;
|
||||||
|
Seq.iter bag.push seq;
|
||||||
|
while not (bag.is_empty ()) do
|
||||||
|
let x = bag.pop () in
|
||||||
|
if not (tags.get_tag x) then (
|
||||||
|
k x;
|
||||||
|
tags.set_tag x;
|
||||||
|
Seq.iter
|
||||||
|
(fun e -> bag.push (graph.dest e))
|
||||||
|
(graph.children x)
|
||||||
|
)
|
||||||
|
done
|
||||||
|
|
||||||
|
let bfs ?tbl ~graph seq =
|
||||||
|
traverse ?tbl ~bag:mk_queue ~graph seq
|
||||||
|
|
||||||
|
let bfs_tag ~tags ~graph seq =
|
||||||
|
traverse_tag ~tags ~bag:(mk_queue()) ~graph seq
|
||||||
|
|
||||||
|
let dfs ?tbl ~graph seq =
|
||||||
|
traverse ?tbl ~bag:mk_stack ~graph seq
|
||||||
|
|
||||||
|
let dfs_tag ~tags ~graph seq =
|
||||||
|
traverse_tag ~tags ~bag:(mk_stack()) ~graph seq
|
||||||
|
|
||||||
|
let dijkstra ?(tbl=mk_table ?eq:None ?hash:None) ?(dist=fun _ -> 1) ~graph seq =
|
||||||
|
(* a table [('v * int) -> 'a] built from a ['v -> 'a] table *)
|
||||||
|
let mk_tbl' size =
|
||||||
|
let vertex_tbl = tbl size in
|
||||||
|
{ mem=(fun (v, _) -> vertex_tbl.mem v)
|
||||||
|
; find=(fun (v, _) -> vertex_tbl.find v)
|
||||||
|
; add=(fun (v, _) -> vertex_tbl.add v)
|
||||||
|
; size=vertex_tbl.size
|
||||||
|
}
|
||||||
|
and seq' = Seq.map (fun v -> v, 0) seq
|
||||||
|
and graph' = {
|
||||||
|
children=(fun (v,d) -> Seq.map (fun e -> e, d) (graph.children v));
|
||||||
|
origin=(fun (e, d) -> graph.origin e, d);
|
||||||
|
dest=(fun (e, d) -> graph.dest e, d + dist e);
|
||||||
|
} in
|
||||||
|
let mk_bag () = mk_heap ~leq:(fun (_, d1) (_, d2) -> d1 <= d2) in
|
||||||
|
traverse ~tbl:mk_tbl' ~bag:mk_bag ~graph:graph' seq'
|
||||||
|
|
||||||
|
let dijkstra_tag ?(dist=fun _ -> 1) ~tags ~graph seq = assert false (* TODO *)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
131
src/data/CCGraph.mli
Normal file
131
src/data/CCGraph.mli
Normal file
|
|
@ -0,0 +1,131 @@
|
||||||
|
|
||||||
|
(*
|
||||||
|
copyright (c) 2013-2015, simon cruanes
|
||||||
|
all rights reserved.
|
||||||
|
|
||||||
|
redistribution and use in source and binary forms, with or without
|
||||||
|
modification, are permitted provided that the following conditions are met:
|
||||||
|
|
||||||
|
redistributions of source code must retain the above copyright notice, this
|
||||||
|
list of conditions and the following disclaimer. redistributions in binary
|
||||||
|
form must reproduce the above copyright notice, this list of conditions and the
|
||||||
|
following disclaimer in the documentation and/or other materials provided with
|
||||||
|
the distribution.
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||||
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||||
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||||
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||||
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||||
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||||
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||||
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||||
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||||
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
*)
|
||||||
|
|
||||||
|
(** {1 Simple Graph Interface} *)
|
||||||
|
|
||||||
|
type 'a sequence = ('a -> unit) -> unit
|
||||||
|
(** A sequence of items of type ['a], possibly infinite *)
|
||||||
|
|
||||||
|
type 'a sequence_once = 'a sequence
|
||||||
|
(** Sequence that should be used only once *)
|
||||||
|
|
||||||
|
exception Sequence_once
|
||||||
|
(** raised when a sequence meant to be used once is used several times *)
|
||||||
|
|
||||||
|
module Seq : sig
|
||||||
|
type 'a t = 'a sequence
|
||||||
|
val return : 'a -> 'a sequence
|
||||||
|
val (>>=) : 'a t -> ('a -> 'b t) -> 'b t
|
||||||
|
val map : ('a -> 'b) -> 'a t -> 'b t
|
||||||
|
val iter : ('a -> unit) -> 'a t -> unit
|
||||||
|
val fold: ('b -> 'a -> 'b) -> 'b -> 'a t -> 'b
|
||||||
|
end
|
||||||
|
|
||||||
|
(** {2 Interfaces for graphs} *)
|
||||||
|
|
||||||
|
(** Directed graph with vertices of type ['v] and edges of type [e'] *)
|
||||||
|
type ('v, 'e) t = {
|
||||||
|
children: 'v -> 'e sequence;
|
||||||
|
origin: 'e -> 'v;
|
||||||
|
dest: 'e -> 'v;
|
||||||
|
}
|
||||||
|
|
||||||
|
(** Mutable bitset for values of type ['v] *)
|
||||||
|
type 'v tag_set = {
|
||||||
|
get_tag: 'v -> bool;
|
||||||
|
set_tag: 'v -> unit; (** Set tag to [true] for the given element *)
|
||||||
|
}
|
||||||
|
|
||||||
|
(** Mutable table with keys ['k] and values ['a] *)
|
||||||
|
type ('k, 'a) table = {
|
||||||
|
mem: 'k -> bool;
|
||||||
|
find: 'k -> 'a; (** @raise Not_found *)
|
||||||
|
add: 'k -> 'a -> unit; (** Erases previous binding *)
|
||||||
|
size: unit -> int;
|
||||||
|
}
|
||||||
|
|
||||||
|
(** Mutable set *)
|
||||||
|
type 'a set = ('a, unit) table
|
||||||
|
|
||||||
|
(** Default implementation for {!table}: a {!Hashtbl.t} *)
|
||||||
|
val mk_table: ?eq:('k -> 'k -> bool) -> ?hash:('k -> int) -> int -> ('k, 'a) table
|
||||||
|
|
||||||
|
(** {2 Traversals} *)
|
||||||
|
|
||||||
|
(** Bag of elements of type ['a] *)
|
||||||
|
type 'a bag = {
|
||||||
|
push: 'a -> unit;
|
||||||
|
is_empty: unit -> bool;
|
||||||
|
pop: unit -> 'a; (** raises some exception is empty *)
|
||||||
|
}
|
||||||
|
|
||||||
|
val mk_queue: unit -> 'a bag
|
||||||
|
val mk_stack: unit -> 'a bag
|
||||||
|
|
||||||
|
val mk_heap: leq:('a -> 'a -> bool) -> 'a bag
|
||||||
|
(** [mk_heap ~leq] makes a priority queue where [leq x y = true] means that
|
||||||
|
[x] is smaller than [y] and should be prioritary *)
|
||||||
|
|
||||||
|
val traverse: ?tbl:(int -> 'v set) ->
|
||||||
|
bag:(unit -> 'v bag) ->
|
||||||
|
graph:('v, 'e) t ->
|
||||||
|
'v sequence -> 'v sequence
|
||||||
|
(** Traversal of the given graph, starting from a sequence
|
||||||
|
of vertices, using the given bag to choose the next vertex to
|
||||||
|
explore. Each vertex is visited at most once. *)
|
||||||
|
|
||||||
|
val traverse_tag: tags:'v tag_set ->
|
||||||
|
bag:'v bag ->
|
||||||
|
graph:('v, 'e) t ->
|
||||||
|
'v sequence ->
|
||||||
|
'v sequence_once
|
||||||
|
(** One-shot traversal of the graph using a tag set and the given bag *)
|
||||||
|
|
||||||
|
val bfs: ?tbl:(int -> 'v set) -> graph:('v, 'e) t -> 'v sequence -> 'v sequence
|
||||||
|
|
||||||
|
val bfs_tag: tags:'v tag_set -> graph:('v, 'e) t -> 'v sequence -> 'v sequence_once
|
||||||
|
|
||||||
|
val dfs: ?tbl:(int -> 'v set) -> graph:('v, 'e) t -> 'v sequence -> 'v sequence
|
||||||
|
|
||||||
|
val dfs_tag: tags:'v tag_set -> graph:('v, 'e) t -> 'v sequence -> 'v sequence_once
|
||||||
|
|
||||||
|
val dijkstra : ?tbl:(int -> 'v set) ->
|
||||||
|
?dist:('e -> int) ->
|
||||||
|
graph:('v, 'e) t ->
|
||||||
|
'v sequence ->
|
||||||
|
('v * int) sequence
|
||||||
|
(** Dijkstra algorithm, traverses a graph in increasing distance order.
|
||||||
|
Yields each vertex paired with its distance to the set of initial vertices
|
||||||
|
(the smallest distance needed to reach the node from the initial vertices)
|
||||||
|
@param dist distance from origin of the edge to destination,
|
||||||
|
must be strictly positive. Default is 1 for every edge *)
|
||||||
|
|
||||||
|
val dijkstra_tag : ?dist:('e -> int) ->
|
||||||
|
tags:'v tag_set ->
|
||||||
|
graph:('v, 'e) t ->
|
||||||
|
'v sequence ->
|
||||||
|
('v * int) sequence_once
|
||||||
|
|
||||||
Loading…
Add table
Reference in a new issue