LazyGraph is now fully polymorphic (plan to implement LazyGraph.product, which

cannot be expressed with functors), with optional eq/hash functions
This commit is contained in:
Simon Cruanes 2013-03-21 11:22:41 +01:00
parent e6eb9a79eb
commit e0b6b8be5b
3 changed files with 509 additions and 548 deletions

View file

@ -1,19 +1,18 @@
(** Compute the memory footprint of a value (and its subvalues). Reference is
http://rwmj.wordpress.com/2009/08/05/ocaml-internals-part-2-strings-and-other-types/ *)
module G = LazyGraph.PhysicalMake(struct type t = Obj.t end)
(** Graph on memory values *)
open Enum.Infix
(** A graph vertex is an Obj.t value *)
let graph x =
let graph =
let force x =
if Obj.is_block x
then
let children = Enum.map (fun i -> i, Obj.field x i) (0--(Obj.size x - 1)) in
G.Node (x, Obj.tag x, children)
LazyGraph.Node (x, Obj.tag x, children)
else
G.Node (x, Obj.obj x, Enum.empty)
LazyGraph.Node (x, Obj.obj x, Enum.empty)
in LazyGraph.make ~eq:(==) force
let word_size = Sys.word_size / 8
@ -24,14 +23,14 @@ let size x =
let compute_size x =
let o = Obj.repr x in
let vertices = G.bfs graph o in
let vertices = LazyGraph.bfs graph o in
Enum.fold (fun sum (o',_,_) -> size o' + sum) 0 vertices
let print_val fmt x =
let o = Obj.repr x in
let graph' = G.map ~edges:(fun i -> [`Label (string_of_int i)])
let graph' = LazyGraph.map ~edges:(fun i -> [`Label (string_of_int i)])
~vertices:(fun v -> [`Label (string_of_int v); `Shape "box"]) graph in
G.Dot.pp ~name:"value" graph' fmt (Enum.singleton o)
LazyGraph.Dot.pp ~name:"value" graph' fmt (Enum.singleton o)
let print_val_file filename x =
let out = open_out filename in

View file

@ -25,233 +25,157 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
(** {1 Lazy graph data structure} *)
module type S = sig
(** This module serves to represent directed graphs in a lazy fashion. Such
(** This module serves to represent directed graphs in a lazy fashion. Such
a graph is always accessed from a given initial node (so only connected
components can be represented by a single value of type ('v,'e) t). *)
(** {2 Type definitions} *)
(** {2 Type definitions} *)
type vertex
(** The concrete type of a vertex. Vertices are considered unique within
the graph. *)
module H : Hashtbl.S with type key = vertex
type ('v, 'e) t = vertex -> ('v, 'e) node
(** Lazy graph structure. Vertices are annotated with values of type 'v,
and edges are of type 'e. A graph is a function that maps vertices
to a label and some edges to other vertices. *)
and ('v, 'e) node =
type ('id, 'v, 'e) t = {
eq : 'id -> 'id -> bool;
hash : 'id -> int;
force : 'id -> ('id, 'v, 'e) node;
} (** Lazy graph structure. Vertices, that have unique identifiers of type 'id,
are annotated with values of type 'v, and edges are annotated by type 'e.
A graph is a function that maps each identifier to a label and some edges to
other vertices, or to Empty if the identifier is not part of the graph. *)
and ('id, 'v, 'e) node =
| Empty
| Node of vertex * 'v * ('e * vertex) Enum.t
| Node of 'id * 'v * ('e * 'id) Enum.t
(** A single node of the graph, with outgoing edges *)
and 'e path = (vertex * 'e * vertex) list
and ('id, 'e) path = ('id * 'e * 'id) list
(** A reverse path (from the last element of the path to the first). *)
(** {2 Basic constructors} *)
(** {2 Basic constructors} *)
(** It is difficult to provide generic combinators to build graphs. The problem
is that if one wants to "update" a node, it's still very hard to update
how other nodes re-generate the current node at the same time. *)
let empty =
{ eq=(==);
hash=Hashtbl.hash;
force = (fun _ -> Empty);
}
val empty : ('v, 'e) t
(** Empty graph *)
let singleton ?(eq=(=)) ?(hash=Hashtbl.hash) v label =
let force v' =
if eq v v' then Node (v, label, Enum.empty) else Empty in
{ force; eq; hash; }
val singleton : vertex -> 'v -> ('v, 'e) t
(** Trivial graph, composed of one node *)
let make ?(eq=(=)) ?(hash=Hashtbl.hash) force =
{ eq; hash; force; }
val from_enum : vertices:(vertex * 'v) Enum.t ->
edges:(vertex * 'e * vertex) Enum.t ->
('v, 'e) t
(** Concrete (eager) representation of a Graph *)
let from_enum ?(eq=(=)) ?(hash=Hashtbl.hash) ~vertices ~edges =
failwith "from_enum: not implemented"
val from_fun : (vertex -> ('v * ('e * vertex) list) option) -> ('v, 'e) t
(** Convenient semi-lazy implementation of graphs *)
(** {2 Traversals} *)
(** {3 Full interface to traversals} *)
module Full : sig
type ('v, 'e) traverse_event =
| EnterVertex of vertex * 'v * int * 'e path (* unique ID, trail *)
| ExitVertex of vertex (* trail *)
| MeetEdge of vertex * 'e * vertex * edge_type (* edge *)
and edge_type =
| EdgeForward (* toward non explored vertex *)
| EdgeBackward (* toward the current trail *)
| EdgeTransverse (* toward a totally explored part of the graph *)
val bfs_full : ?id:int ref -> ?explored:unit H.t ->
('v, 'e) t -> vertex Enum.t -> ('v, 'e) traverse_event Enum.t
(** Lazy traversal in breadth first from a finite set of vertices *)
val dfs_full : ?id:int ref -> ?explored:unit H.t ->
('v, 'e) t -> vertex Enum.t -> ('v, 'e) traverse_event Enum.t
(** Lazy traversal in depth first from a finite set of vertices *)
end
(** The traversal functions assign a unique ID to every traversed node *)
val bfs : ?id:int ref -> ?explored:unit H.t ->
('v, 'e) t -> vertex -> (vertex * 'v * int) Enum.t
(** Lazy traversal in breadth first *)
val dfs : ?id:int ref -> ?explored:unit H.t ->
('v, 'e) t -> vertex -> (vertex * 'v * int) Enum.t
(** Lazy traversal in depth first *)
val enum : ('v, 'e) t -> vertex -> (vertex * 'v) Enum.t * (vertex * 'e * vertex) Enum.t
(** Convert to an enumeration. The traversal order is undefined. *)
val depth : (_, 'e) t -> vertex -> (int, 'e) t
(** Map vertices to their depth, ie their distance from the initial point *)
val min_path : ?distance:(vertex -> 'e -> vertex -> int) ->
('v, 'e) t -> vertex -> vertex ->
int * 'e path
(** Minimal path from the given Graph from the first vertex to
the second. It returns both the distance and the path *)
(** {2 Lazy transformations} *)
val union : ?combine:('v -> 'v -> 'v) -> ('v, 'e) t -> ('v, 'e) t -> ('v, 'e) t
(** Lazy union of the two graphs. If they have common vertices,
[combine] is used to combine the labels. By default, the second
label is dropped and only the first is kept *)
val map : vertices:('v -> 'v2) -> edges:('e -> 'e2) ->
('v, 'e) t -> ('v2, 'e2) t
(** Map vertice and edge labels *)
val filter : ?vertices:(vertex -> 'v -> bool) ->
?edges:(vertex -> 'e -> vertex -> bool) ->
('v, 'e) t -> ('v, 'e) t
(** Filter out vertices and edges that do not satisfy the given
predicates. The default predicates always return true. *)
val limit_depth : max:int -> ('v, 'e) t -> ('v, 'e) t
(** Return the same graph, but with a bounded depth. Vertices whose
depth is too high will be replaced by Empty *)
module Infix : sig
val (++) : ('v, 'e) t -> ('v, 'e) t -> ('v, 'e) t
(** Union of graphs (alias for {! union}) *)
end
(** {2 Pretty printing in the DOT (graphviz) format *)
module Dot : sig
type attribute = [
| `Color of string
| `Shape of string
| `Weight of int
| `Style of string
| `Label of string
| `Other of string * string
] (** Dot attribute *)
val pp_enum : name:string -> Format.formatter ->
(attribute list,attribute list) Full.traverse_event Enum.t ->
unit
val pp : name:string -> (attribute list, attribute list) t ->
Format.formatter ->
vertex Enum.t -> unit
(** Pretty print the given graph (starting from the given set of vertices)
to the channel in DOT format *)
end
end
(** {2 Module type for hashable types} *)
module type HASHABLE = sig
type t
val equal : t -> t -> bool
val hash : t -> int
end
(** {2 Implementation of HASHABLE with physical equality and hash} *)
module PhysicalHash(X : sig type t end) : HASHABLE with type t = X.t
= struct
type t = X.t
let equal a b = a == b
let hash a = Hashtbl.hash a
end
(** {2 Build a graph} *)
module Make(X : HASHABLE) : S with type vertex = X.t = struct
(** {2 Type definitions} *)
type vertex = X.t
(** The concrete type of a vertex. Vertices are considered unique within
the graph. *)
module H = Hashtbl.Make(X)
type ('v, 'e) t = vertex -> ('v, 'e) node
(** Lazy graph structure. Vertices are annotated with values of type 'v,
and edges are of type 'e. A graph is a function that maps vertices
to a label and some edges to other vertices. *)
and ('v, 'e) node =
| Empty
| Node of vertex * 'v * ('e * vertex) Enum.t
(** A single node of the graph, with outgoing edges *)
and 'e path = (vertex * 'e * vertex) list
(** {2 Basic constructors} *)
let empty =
fun _ -> Empty
let singleton v label =
fun v' ->
if X.equal v v' then Node (v, label, Enum.empty) else Empty
let from_enum ~vertices ~edges = failwith "from_enum: not implemented"
let from_fun f =
fun v ->
let from_fun ?(eq=(=)) ?(hash=Hashtbl.hash) f =
let force v =
match f v with
| None -> Empty
| Some (l, edges) -> Node (v, l, Enum.of_list edges)
| Some (l, edges) -> Node (v, l, Enum.of_list edges) in
{ eq; hash; force; }
(** {2 Traversals} *)
(** {2 Polymorphic utils} *)
(** {3 Full interface to traversals} *)
module Full = struct
type ('v, 'e) traverse_event =
| EnterVertex of vertex * 'v * int * 'e path (* unique ID, trail *)
| ExitVertex of vertex (* trail *)
| MeetEdge of vertex * 'e * vertex * edge_type (* edge *)
(** A set of vertices *)
type 'id set =
<
mem : 'id -> bool;
add : 'id -> unit;
iter : ('id -> unit) -> unit;
>
(** Make a set based on hashtables *)
let mk_hset (type id) ?(eq=(=)) ~hash =
let module H = Hashtbl.Make(struct type t = id let equal = eq let hash = hash end) in
let set = H.create 5 in
object
method mem x = H.mem set x
method add x = H.replace set x ()
method iter f = H.iter (fun x () -> f x) set
end
(** Make a set based on balanced trees *)
let mk_tset (type id) ~cmp =
let module S = Set.Make(struct type t = id let compare = cmp end) in
let set = ref S.empty in
object
method mem x = S.mem x !set
method add x = set := S.add x !set
method iter f = S.iter f !set
end
type ('id,'a) map =
<
mem : 'id -> bool;
get : 'id -> 'a; (* or Not_found *)
add : 'id -> 'a -> unit;
iter : ('id -> 'a -> unit) -> unit;
>
(** Make a map based on hashtables *)
let mk_hmap (type id) ?(eq=(=)) ~hash =
let module H = Hashtbl.Make(struct type t = id let equal = eq let hash = hash end) in
let m = H.create 5 in
object
method mem k = H.mem m k
method add k v = H.replace m k v
method get k = H.find m k
method iter f = H.iter f m
end
(** Make a map based on balanced trees *)
let mk_tmap (type id) ~cmp =
let module M = Map.Make(struct type t = id let compare = cmp end) in
let m = ref M.empty in
object
method mem k = M.mem k !m
method add k v = m := M.add k v !m
method get k = M.find k !m
method iter f = M.iter f !m
end
(** {2 Traversals} *)
(** {3 Full interface to traversals} *)
module Full = struct
type ('id, 'v, 'e) traverse_event =
| EnterVertex of 'id * 'v * int * ('id, 'e) path (* unique ID, trail *)
| ExitVertex of 'id (* trail *)
| MeetEdge of 'id * 'e * 'id * edge_type (* edge *)
and edge_type =
| EdgeForward (* toward non explored vertex *)
| EdgeBackward (* toward the current trail *)
| EdgeTransverse (* toward a totally explored part of the graph *)
(* helper type *)
type 'e todo_item =
| FullEnter of vertex * 'e path
| FullExit of vertex
| FullFollowEdge of 'e path
type ('id,'e) todo_item =
| FullEnter of 'id * ('id, 'e) path
| FullExit of 'id
| FullFollowEdge of ('id, 'e) path
(** Is [v] part of the [path]? *)
let rec mem_path path v =
let rec mem_path ~eq path v =
match path with
| (v',_,v'')::path' ->
(X.equal v v') || (X.equal v v'') || (mem_path path' v)
(eq v v') || (eq v v'') || (mem_path ~eq path' v)
| [] -> false
let bfs_full ?(id=ref 0) ?(explored=H.create 5) graph vertices =
let bfs_full ?(id=0) ?explored graph vertices =
let explored = match explored with
| Some e -> e
| None -> fun () -> mk_hset ~eq:graph.eq ~hash:graph.hash in
fun () ->
let explored = explored () in
let id = ref id in
let q = Queue.create () in (* queue of nodes to explore *)
Enum.iter (fun v -> Queue.push (FullEnter (v,[])) q) vertices;
let rec next () =
if Queue.is_empty q then raise Enum.EOG else
match Queue.pop q with
| FullEnter (v', path) ->
if H.mem explored v' then next ()
else begin match graph v' with
if explored#mem v' then next ()
else begin match graph.force v' with
| Empty -> next ()
| Node (_, label, edges) ->
H.add explored v' ();
explored#add v';
(* explore neighbors *)
Enum.iter
(fun (e,v'') ->
@ -269,8 +193,8 @@ module Make(X : HASHABLE) : S with type vertex = X.t = struct
| FullFollowEdge [] -> assert false
| FullFollowEdge (((v'', e, v') :: path) as path') ->
(* edge path .... v' --e--> v'' *)
if H.mem explored v''
then if mem_path path v''
if explored#mem v''
then if mem_path ~eq:graph.eq path v''
then MeetEdge (v'', e, v', EdgeBackward)
else MeetEdge (v'', e, v', EdgeTransverse)
else begin
@ -280,8 +204,13 @@ module Make(X : HASHABLE) : S with type vertex = X.t = struct
end
in next
let dfs_full ?(id=ref 0) ?(explored=H.create 5) graph vertices =
let dfs_full ?(id=0) ?explored graph vertices =
let explored = match explored with
| Some e -> e
| None -> (fun () -> mk_hset ~eq:graph.eq ~hash:graph.hash) in
fun () ->
let explored = explored () in
let id = ref id in
let s = Stack.create () in (* stack of nodes to explore *)
Enum.iter (fun v -> Stack.push (FullEnter (v,[])) s) vertices;
let rec next () =
@ -289,12 +218,12 @@ module Make(X : HASHABLE) : S with type vertex = X.t = struct
match Stack.pop s with
| FullExit v' -> ExitVertex v'
| FullEnter (v', path) ->
if H.mem explored v' then next ()
if explored#mem v' then next ()
(* explore the node now *)
else begin match graph v' with
else begin match graph.force v' with
| Empty -> next ()
| Node (_, label, edges) ->
H.add explored v' ();
explored#add v';
(* prepare to exit later *)
Stack.push (FullExit v') s;
(* explore neighbors *)
@ -310,8 +239,8 @@ module Make(X : HASHABLE) : S with type vertex = X.t = struct
| FullFollowEdge [] -> assert false
| FullFollowEdge (((v'', e, v') :: path) as path') ->
(* edge path .... v' --e--> v'' *)
if H.mem explored v''
then if mem_path path v''
if explored#mem v''
then if mem_path ~eq:graph.eq path v''
then MeetEdge (v'', e, v', EdgeBackward)
else MeetEdge (v'', e, v', EdgeTransverse)
else begin
@ -320,70 +249,89 @@ module Make(X : HASHABLE) : S with type vertex = X.t = struct
MeetEdge (v'', e, v', EdgeForward)
end
in next
end
end
let bfs ?id ?explored graph v =
let bfs ?id ?explored graph v =
Enum.filterMap
(function
| Full.EnterVertex (v, l, i, _) -> Some (v, l, i)
| _ -> None)
(Full.bfs_full ?id ?explored graph (Enum.singleton v))
let dfs ?id ?explored graph v =
let dfs ?id ?explored graph v =
Enum.filterMap
(function
| Full.EnterVertex (v, l, i, _) -> Some (v, l, i)
| _ -> None)
(Full.dfs_full ?id ?explored graph (Enum.singleton v))
let enum graph v = (Enum.empty, Enum.empty) (* TODO *)
let enum graph v = (Enum.empty, Enum.empty) (* TODO *)
let depth graph v =
let depth graph v =
failwith "not implemented" (* TODO *)
(** Minimal path from the given Graph from the first vertex to
(** Minimal path from the given Graph from the first vertex to
the second. It returns both the distance and the path *)
let min_path ?(distance=fun v1 e v2 -> 1) graph v1 v2 =
let min_path ?(distance=fun v1 e v2 -> 1) ?explored graph v1 v2 =
failwith "not implemented"
(** {2 Lazy transformations} *)
(** {2 Lazy transformations} *)
let union ?(combine=fun x y -> x) g1 g2 =
fun v ->
match g1 v, g2 v with
let union ?(combine=fun x y -> x) g1 g2 =
let force v =
match g1.force v, g2.force v with
| Empty, Empty -> Empty
| ((Node _) as n), Empty -> n
| Empty, ((Node _) as n) -> n
| Node (_, l1, e1), Node (_, l2, e2) ->
Node (v, combine l1 l2, Enum.append e1 e2)
in { eq=g1.eq; hash=g1.hash; force; }
let map ~vertices ~edges g =
fun vertex ->
match g vertex with
let map ~vertices ~edges g =
let force v =
match g.force v with
| Empty -> Empty
| Node (_, l, edges_enum) ->
let edges_enum' = Enum.map (fun (e,v') -> (edges e), v') edges_enum in
Node (vertex, vertices l, edges_enum')
Node (v, vertices l, edges_enum')
in { eq=g.eq; hash=g.hash; force; }
let filter ?(vertices=(fun v l -> true)) ?(edges=fun v1 e v2 -> true) g =
fun vertex ->
match g vertex with
let filter ?(vertices=(fun v l -> true)) ?(edges=fun v1 e v2 -> true) g =
let force v =
match g.force v with
| Empty -> Empty
| Node (_, l, edges_enum) when vertices vertex l ->
| Node (_, l, edges_enum) when vertices v l ->
(* filter out edges *)
let edges_enum' = Enum.filter (fun (e,v') -> edges vertex e v') edges_enum in
Node (vertex, l, edges_enum')
let edges_enum' = Enum.filter (fun (e,v') -> edges v e v') edges_enum in
Node (v, l, edges_enum')
| Node _ -> Empty (* filter out this vertex *)
in { eq=g.eq; hash=g.hash; force; }
let limit_depth ~max g =
let product g1 g2 =
let force (v1,v2) =
match g1.force v1, g2.force v2 with
| Empty, _
| _, Empty -> Empty
| Node (_, l1, edges1), Node (_, l2, edges2) ->
(* product of edges *)
let edges = Enum.product edges1 edges2 in
let edges = Enum.map (fun ((e1,v1'),(e2,v2')) -> ((e1,e2),(v1',v2'))) edges in
Node ((v1,v2), (l1,l2), edges)
and eq (v1,v2) (v1',v2') =
g1.eq v1 v1' && g2.eq v2 v2'
and hash (v1,v2) = ((g1.hash v1) * 65599) + g2.hash v2
in
{ eq; hash; force; }
let limit_depth ~max g =
(* TODO; this should be eager (compute depth by BFS) *)
failwith "not implemented"
module Infix = struct
module Infix = struct
let (++) g1 g2 = union ?combine:None g1 g2
end
end
module Dot = struct
module Dot = struct
type attribute = [
| `Color of string
| `Shape of string
@ -394,7 +342,7 @@ module Make(X : HASHABLE) : S with type vertex = X.t = struct
] (** Dot attribute *)
(** Print an enum of Full.traverse_event *)
let pp_enum ~name formatter events =
let pp_enum ?(eq=(=)) ?(hash=Hashtbl.hash) ~name formatter events =
(* print an attribute *)
let print_attribute formatter attr =
match attr with
@ -407,13 +355,13 @@ module Make(X : HASHABLE) : S with type vertex = X.t = struct
(* map from vertices to integers *)
and get_id =
let count = ref 0 in
let m = H.create 5 in
let m = mk_hmap ~eq ~hash in
fun vertex ->
try H.find m vertex
try m#get vertex
with Not_found ->
let n = !count in
incr count;
H.replace m vertex n;
m#add vertex n;
n
in
(* the unique name of a vertex *)
@ -440,16 +388,5 @@ module Make(X : HASHABLE) : S with type vertex = X.t = struct
let pp ~name graph formatter vertices =
let enum = Full.bfs_full graph vertices in
pp_enum ~name formatter enum
end
pp_enum ~eq:graph.eq ~hash:graph.hash ~name formatter enum
end
(** {2 Build a graph based on physical equality} *)
module PhysicalMake(X : sig type t end) : S with type vertex = X.t
= Make(PhysicalHash(X))
module IntGraph = Make(struct
type t = int
let equal i j = i = j
let hash i = i
end)

View file

@ -23,127 +23,170 @@ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*)
(** {1 Lazy graph data structure} *)
(** {1 Lazy graph polymorphic data structure} *)
module type S = sig
(** This module serves to represent directed graphs in a lazy fashion. Such
(** This module serves to represent directed graphs in a lazy fashion. Such
a graph is always accessed from a given initial node (so only connected
components can be represented by a single value of type ('v,'e) t). *)
components can be represented by a single value of type ('v,'e) t).
(** {2 Type definitions} *)
The default equality considered here is [(=)], and the default hash
function is {! Hashtbl.hash}. *)
type vertex
(** The concrete type of a vertex. Vertices are considered unique within
the graph. *)
(** {2 Type definitions} *)
module H : Hashtbl.S with type key = vertex
type ('v, 'e) t = vertex -> ('v, 'e) node
(** Lazy graph structure. Vertices are annotated with values of type 'v,
and edges are of type 'e. A graph is a function that maps vertices
to a label and some edges to other vertices. *)
and ('v, 'e) node =
type ('id, 'v, 'e) t = {
eq : 'id -> 'id -> bool;
hash : 'id -> int;
force : 'id -> ('id, 'v, 'e) node;
} (** Lazy graph structure. Vertices, that have unique identifiers of type 'id,
are annotated with values of type 'v, and edges are annotated by type 'e.
A graph is a function that maps each identifier to a label and some edges to
other vertices, or to Empty if the identifier is not part of the graph. *)
and ('id, 'v, 'e) node =
| Empty
| Node of vertex * 'v * ('e * vertex) Enum.t
| Node of 'id * 'v * ('e * 'id) Enum.t
(** A single node of the graph, with outgoing edges *)
and 'e path = (vertex * 'e * vertex) list
and ('id, 'e) path = ('id * 'e * 'id) list
(** A reverse path (from the last element of the path to the first). *)
(** {2 Basic constructors} *)
(** {2 Basic constructors} *)
(** It is difficult to provide generic combinators to build graphs. The problem
(** It is difficult to provide generic combinators to build graphs. The problem
is that if one wants to "update" a node, it's still very hard to update
how other nodes re-generate the current node at the same time.
The best way to do it is to build one function that maps the
underlying structure of the type vertex to a graph (for instance,
a concrete data structure, or an URL...). *)
val empty : ('v, 'e) t
val empty : ('id, 'v, 'e) t
(** Empty graph *)
val singleton : vertex -> 'v -> ('v, 'e) t
val singleton : ?eq:('id -> 'id -> bool) -> ?hash:('id -> int) ->
'id -> 'v -> ('id, 'v, 'e) t
(** Trivial graph, composed of one node *)
val from_enum : vertices:(vertex * 'v) Enum.t ->
edges:(vertex * 'e * vertex) Enum.t ->
('v, 'e) t
val make : ?eq:('id -> 'id -> bool) -> ?hash:('id -> int) ->
('id -> ('id,'v,'e) node) -> ('id,'v,'e) t
(** Build a graph from the [force] function *)
val from_enum : ?eq:('id -> 'id -> bool) -> ?hash:('id -> int) ->
vertices:('id * 'v) Enum.t ->
edges:('id * 'e * 'id) Enum.t ->
('id, 'v, 'e) t
(** Concrete (eager) representation of a Graph (XXX not implemented)*)
val from_fun : (vertex -> ('v * ('e * vertex) list) option) -> ('v, 'e) t
val from_fun : ?eq:('id -> 'id -> bool) -> ?hash:('id -> int) ->
('id -> ('v * ('e * 'id) list) option) -> ('id, 'v, 'e) t
(** Convenient semi-lazy implementation of graphs *)
(** {2 Traversals} *)
(** {2 Polymorphic utils} *)
(** {3 Full interface to traversals} *)
module Full : sig
type ('v, 'e) traverse_event =
| EnterVertex of vertex * 'v * int * 'e path (* unique ID, trail *)
| ExitVertex of vertex (* trail *)
| MeetEdge of vertex * 'e * vertex * edge_type (* edge *)
(** A set of vertices *)
type 'id set =
<
mem : 'id -> bool;
add : 'id -> unit;
iter : ('id -> unit) -> unit;
>
val mk_hset : ?eq:('id -> 'id -> bool) -> hash:('id -> int) -> 'id set
(** Make a set based on hashtables *)
val mk_tset : cmp:('id -> 'id -> int) -> 'id set
(** Make a set based on balanced trees *)
type ('id,'a) map =
<
mem : 'id -> bool;
get : 'id -> 'a; (* or Not_found *)
add : 'id -> 'a -> unit;
iter : ('id -> 'a -> unit) -> unit;
>
val mk_hmap : ?eq:('id -> 'id -> bool) -> hash:('id -> int) -> ('id,'a) map
val mk_tmap : cmp:('id -> 'id -> int) -> ('id,'a) map
(** {2 Traversals} *)
(** {3 Full interface to traversals} *)
module Full : sig
type ('id, 'v, 'e) traverse_event =
| EnterVertex of 'id * 'v * int * ('id, 'e) path (* unique ID, trail *)
| ExitVertex of 'id (* trail *)
| MeetEdge of 'id * 'e * 'id * edge_type (* edge *)
and edge_type =
| EdgeForward (* toward non explored vertex *)
| EdgeBackward (* toward the current trail *)
| EdgeTransverse (* toward a totally explored part of the graph *)
val bfs_full : ?id:int ref -> ?explored:unit H.t ->
('v, 'e) t -> vertex Enum.t -> ('v, 'e) traverse_event Enum.t
val bfs_full : ?id:int -> ?explored:(unit -> 'id set) ->
('id, 'v, 'e) t -> 'id Enum.t ->
('id, 'v, 'e) traverse_event Enum.t
(** Lazy traversal in breadth first from a finite set of vertices *)
val dfs_full : ?id:int ref -> ?explored:unit H.t ->
('v, 'e) t -> vertex Enum.t -> ('v, 'e) traverse_event Enum.t
val dfs_full : ?id:int -> ?explored:(unit -> 'id set) ->
('id, 'v, 'e) t -> 'id Enum.t ->
('id, 'v, 'e) traverse_event Enum.t
(** Lazy traversal in depth first from a finite set of vertices *)
end
end
(** The traversal functions assign a unique ID to every traversed node *)
(** The traversal functions assign a unique ID to every traversed node *)
val bfs : ?id:int ref -> ?explored:unit H.t ->
('v, 'e) t -> vertex -> (vertex * 'v * int) Enum.t
val bfs : ?id:int -> ?explored:(unit -> 'id set) ->
('id, 'v, 'e) t -> 'id -> ('id * 'v * int) Enum.t
(** Lazy traversal in breadth first *)
val dfs : ?id:int ref -> ?explored:unit H.t ->
('v, 'e) t -> vertex -> (vertex * 'v * int) Enum.t
val dfs : ?id:int -> ?explored:(unit -> 'id set) ->
('id, 'v, 'e) t -> 'id -> ('id * 'v * int) Enum.t
(** Lazy traversal in depth first *)
val enum : ('v, 'e) t -> vertex -> (vertex * 'v) Enum.t * (vertex * 'e * vertex) Enum.t
val enum : ('id, 'v, 'e) t -> 'id -> ('id * 'v) Enum.t * ('id * 'e * 'id) Enum.t
(** Convert to an enumeration. The traversal order is undefined. *)
val depth : (_, 'e) t -> vertex -> (int, 'e) t
val depth : ('id, _, 'e) t -> 'id -> ('id, int, 'e) t
(** Map vertices to their depth, ie their distance from the initial point *)
val min_path : ?distance:(vertex -> 'e -> vertex -> int) ->
('v, 'e) t -> vertex -> vertex ->
int * 'e path
val min_path : ?distance:('id -> 'e -> 'id -> int) ->
?explored:(unit -> ('id, int * ('id,'e) path) map) ->
('id, 'v, 'e) t -> 'id -> 'id ->
int * ('id, 'e) path
(** Minimal path from the given Graph from the first vertex to
the second. It returns both the distance and the path *)
(** {2 Lazy transformations} *)
(** {2 Lazy transformations} *)
val union : ?combine:('v -> 'v -> 'v) -> ('v, 'e) t -> ('v, 'e) t -> ('v, 'e) t
val union : ?combine:('v -> 'v -> 'v) ->
('id, 'v, 'e) t -> ('id, 'v, 'e) t -> ('id, 'v, 'e) t
(** Lazy union of the two graphs. If they have common vertices,
[combine] is used to combine the labels. By default, the second
label is dropped and only the first is kept *)
val map : vertices:('v -> 'v2) -> edges:('e -> 'e2) ->
('v, 'e) t -> ('v2, 'e2) t
val map : vertices:('v -> 'v2) -> edges:('e -> 'e2) ->
('id, 'v, 'e) t -> ('id, 'v2, 'e2) t
(** Map vertice and edge labels *)
val filter : ?vertices:(vertex -> 'v -> bool) ->
?edges:(vertex -> 'e -> vertex -> bool) ->
('v, 'e) t -> ('v, 'e) t
val filter : ?vertices:('id -> 'v -> bool) ->
?edges:('id -> 'e -> 'id -> bool) ->
('id, 'v, 'e) t -> ('id, 'v, 'e) t
(** Filter out vertices and edges that do not satisfy the given
predicates. The default predicates always return true. *)
val limit_depth : max:int -> ('v, 'e) t -> ('v, 'e) t
val product : ('id1, 'v1, 'e1) t -> ('id2, 'v2, 'e2) t ->
('id1 * 'id2, 'v1 * 'v2, 'e1 * 'e2) t
(** Cartesian product of the two graphs *)
val limit_depth : max:int -> ('id, 'v, 'e) t -> ('id, 'v, 'e) t
(** Return the same graph, but with a bounded depth. Vertices whose
depth is too high will be replaced by Empty *)
module Infix : sig
val (++) : ('v, 'e) t -> ('v, 'e) t -> ('v, 'e) t
module Infix : sig
val (++) : ('id, 'v, 'e) t -> ('id, 'v, 'e) t -> ('id, 'v, 'e) t
(** Union of graphs (alias for {! union}) *)
end
end
(** {2 Pretty printing in the DOT (graphviz) format *)
module Dot : sig
(** {2 Pretty printing in the DOT (graphviz) format *)
module Dot : sig
type attribute = [
| `Color of string
| `Shape of string
@ -153,32 +196,14 @@ module type S = sig
| `Other of string * string
] (** Dot attribute *)
val pp_enum : name:string -> Format.formatter ->
(attribute list,attribute list) Full.traverse_event Enum.t ->
val pp_enum : ?eq:('id -> 'id -> bool) -> ?hash:('id -> int) ->
name:string -> Format.formatter ->
('id,attribute list,attribute list) Full.traverse_event Enum.t ->
unit
val pp : name:string -> (attribute list, attribute list) t ->
val pp : name:string -> ('id, attribute list, attribute list) t ->
Format.formatter ->
vertex Enum.t -> unit
'id Enum.t -> unit
(** Pretty print the given graph (starting from the given set of vertices)
to the channel in DOT format *)
end
end
(** {2 Module type for hashable types} *)
module type HASHABLE = sig
type t
val equal : t -> t -> bool
val hash : t -> int
end
(** {2 Implementation of HASHABLE with physical equality and hash} *)
module PhysicalHash(X : sig type t end) : HASHABLE with type t = X.t
(** {2 Build a graph} *)
module Make(X : HASHABLE) : S with type vertex = X.t
(** {2 Build a graph based on physical equality} *)
module PhysicalMake(X : sig type t end) : S with type vertex = X.t
module IntGraph : S with type vertex = int