cleanup and refactor of CCRingBuffer (see #126). Add strong tests.

- add some qcheck test comparing to reference implem
- use bounded buffers only
- use inefficient methods (for now)
This commit is contained in:
Simon Cruanes 2017-06-13 20:42:27 +02:00
parent a427d7700c
commit ff77a6a16b
2 changed files with 315 additions and 282 deletions

View file

@ -3,7 +3,11 @@
(* Copyright (C) 2015 Simon Cruanes, Carmelo Piccione *) (* Copyright (C) 2015 Simon Cruanes, Carmelo Piccione *)
(** Polymorphic Circular Buffer for IO *) (** Generic Circular Buffer for IO, with bulk operations.
The bulk operations (e.g. based on {!Array.blit} or {!Bytes.blit})
are more efficient than item-by-item copy.
See https://en.wikipedia.org/wiki/Circular_buffer for an overview. *)
module Array = struct module Array = struct
(** The abstract type for arrays *) (** The abstract type for arrays *)
@ -14,11 +18,8 @@ module Array = struct
(** The type of an array instance *) (** The type of an array instance *)
type t type t
val empty : t val create : int -> t
(** The empty array *) (** Make an array of the given size, filled with dummy elements *)
val make: int -> elt -> t
(** [make s e] makes an array of size [s] with [e] elements *)
val length: t -> int val length: t -> int
(** [length t] gets the total number of elements currently in [t] *) (** [length t] gets the total number of elements currently in [t] *)
@ -51,11 +52,11 @@ module Array = struct
include Bytes include Bytes
end end
module Make(Elt:sig type t end) : module Make(Elt:sig type t val dummy : t end) :
S with type elt = Elt.t and type t = Elt.t array = struct S with type elt = Elt.t and type t = Elt.t array = struct
type elt = Elt.t type elt = Elt.t
type t = Elt.t array type t = Elt.t array
let make = Array.make let create size = Array.make size Elt.dummy
let length = Array.length let length = Array.length
let get = Array.get let get = Array.get
let set = Array.set let set = Array.set
@ -63,7 +64,6 @@ module Array = struct
let blit = Array.blit let blit = Array.blit
let iter = Array.iter let iter = Array.iter
let sub = Array.sub let sub = Array.sub
let empty = Array.of_list []
end end
end end
@ -71,16 +71,16 @@ module type S = sig
(** The module type of Array for this ring buffer *) (** The module type of Array for this ring buffer *)
module Array : Array.S module Array : Array.S
(** Defines the ring buffer type, with both bounded and (** Defines the bounded ring buffer type *)
unbounded flavors *)
type t type t
(** Raised in querying functions when the buffer is empty *) (** Raised in querying functions when the buffer is empty *)
exception Empty exception Empty
val create : ?bounded:bool -> int -> t val create : int -> t
(** [create ?bounded size] creates a new buffer with given size. (** [create size] creates a new bounded buffer with given size.
Defaults to [bounded=false]. *) The underlying array is allocated immediately and no further (large)
allocation will happen from now on. *)
val copy : t -> t val copy : t -> t
(** Make a fresh copy of the buffer. *) (** Make a fresh copy of the buffer. *)
@ -88,26 +88,25 @@ module type S = sig
val capacity : t -> int val capacity : t -> int
(** Length of the inner buffer. *) (** Length of the inner buffer. *)
val max_capacity : t -> int option
(** Maximum length of the inner buffer, or [None] if unbounded. *)
val length : t -> int val length : t -> int
(** Number of elements currently stored in the buffer. *) (** Number of elements currently stored in the buffer. *)
val blit_from : t -> Array.t -> int -> int -> unit val blit_from : t -> Array.t -> int -> int -> unit
(** [blit_from buf from_buf o len] copies the slice [o, ... o + len - 1] from (** [blit_from buf from_buf o len] copies the slice [o, ... o + len - 1] from
a input buffer [from_buf] to the end of the buffer. a input buffer [from_buf] to the end of the buffer.
If the slice is too large for the buffer, only the last part of the array
will be copied.
@raise Invalid_argument if [o,len] is not a valid slice of [s] *) @raise Invalid_argument if [o,len] is not a valid slice of [s] *)
val blit_into : t -> Array.t -> int -> int -> int val blit_into : t -> Array.t -> int -> int -> int
(** [blit_into buf to_buf o len] copies at most [len] elements from [buf] (** [blit_into buf to_buf o len] copies at most [len] elements from [buf]
into [to_buf] starting at offset [o] in [s]. into [to_buf] starting at offset [o] in [s].
@return the number of elements actually copied ([min len (length buf)]). @return the number of elements actually copied ([min len (length buf)]).
@raise Invalid_argument if [o,len] is not a valid slice of [s] *) @raise Invalid_argument if [o,len] is not a valid slice of [s]. *)
val append : t -> into:t -> unit val append : t -> into:t -> unit
(** [append b ~into] copies all data from [b] and adds it at the (** [append b ~into] copies all data from [b] and adds it at the
end of [into] *) end of [into]. Erases data of [into] if there is not enough room. *)
val to_list : t -> Array.elt list val to_list : t -> Array.elt list
(** Extract the current content into a list *) (** Extract the current content into a list *)
@ -115,9 +114,6 @@ module type S = sig
val clear : t -> unit val clear : t -> unit
(** Clear the content of the buffer. Doesn't actually destroy the content. *) (** Clear the content of the buffer. Doesn't actually destroy the content. *)
val reset : t -> unit
(** Clear the content of the buffer, and also resize it to a default size *)
val is_empty :t -> bool val is_empty :t -> bool
(** Is the buffer empty (i.e. contains no elements)? *) (** Is the buffer empty (i.e. contains no elements)? *)
@ -179,46 +175,42 @@ module type S = sig
val of_array : Array.t -> t val of_array : Array.t -> t
(** Create a buffer from an initial array, but doesn't take ownership (** Create a buffer from an initial array, but doesn't take ownership
of it (stills allocates a new internal array) *) of it (stills allocates a new internal array)
@since 0.11 *)
val to_array : t -> Array.t val to_array : t -> Array.t
(** Create an array from the elements, in order. (** Create an array from the elements, in order.
@since 0.11 *) @since 0.11 *)
end end
module MakeFromArray(A:Array.S) = struct (*$inject
open Q.Gen
let g_char = map Char.chr (Char.code 'A' -- Char.code 'z')
let g_str = string_size ~gen:g_char (0--10)
let a_str = {Q.string with Q.gen=g_str}
*)
module MakeFromArray(A:Array.S) : S with module Array = A = struct
module Array = A module Array = A
type t = { type t = {
mutable start : int; mutable start : int;
mutable stop : int; (* excluded *) mutable stop : int; (* excluded *)
mutable buf : Array.t; buf : Array.t;
bounded : bool;
size : int
} }
exception Empty exception Empty
let create ?(bounded=false) size = let create size =
if size < 1 then invalid_arg "CCRingBuffer.create";
{ start=0; { start=0;
stop=0; stop=0;
bounded; buf = A.create (size+1); (* keep room for extra slot *)
size;
buf = A.empty
} }
let copy b = let copy b =
{ b with buf=A.copy b.buf; } { b with buf=A.copy b.buf; }
(*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create s_len in \
Byte.blit_from b s 0 s_len; \
let b' = Byte.copy b in \
try Byte.iteri b (fun i c -> if Byte.get_front b' i <> c then raise Exit); true with Exit -> false)
*)
(*$T (*$T
let b = Byte.of_array (Bytes.of_string "abc") in \ let b = Byte.of_array (Bytes.of_string "abc") in \
let b' = Byte.copy b in \ let b' = Byte.copy b in \
@ -231,157 +223,85 @@ module MakeFromArray(A:Array.S) = struct
match len with 0 -> 0 | l -> l - 1 match len with 0 -> 0 | l -> l - 1
(*$Q (*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \ a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \ let s_len = Bytes.length s in \
let b = Byte.create s_len in \ let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \ Byte.blit_from b s 0 s_len; \
Byte.capacity b >= s_len) Byte.capacity b >= s_len)
*) *)
(*$Q
(Q.pair Q.small_int Q.printable_string) (fun (i, s) -> let s = Bytes.of_string s in \
let i = abs i in \
let s_len = Bytes.length s in \
let b = Byte.create ~bounded:true i in \
Byte.blit_from b s 0 s_len; \
Byte.capacity b <= i)
*)
let max_capacity b = if b.bounded then Some b.size else None
(*$Q
Q.small_int (fun i -> \
let i = abs i in \
let b = Byte.create i in \
Byte.max_capacity b = None)
*)
(*$Q
Q.small_int (fun i -> \
let i = abs i in \
let b = Byte.create ~bounded:true i in \
Byte.max_capacity b = Some i)
*)
let length b = let length b =
if b.stop >= b.start if b.stop >= b.start
then b.stop - b.start then b.stop - b.start
else (A.length b.buf - b.start) + b.stop else (A.length b.buf - b.start) + b.stop
(*$Q let next_ b i =
(Q.pair Q.small_int Q.printable_string) (fun (i, s) -> let s = Bytes.of_string s in \ let j = i+1 in
let i = abs i in \ if j = A.length b.buf then 0 else j
let s_len = Bytes.length s in \
let b = Byte.create i in \
Byte.blit_from b s 0 s_len; \
Byte.length b = s_len)
*)
(*$Q let incr_start_ b = b.start <- next_ b b.start
(Q.pair Q.small_int Q.printable_string) (fun (i, s) -> let s = Bytes.of_string s in \ let incr_stop_ b = b.stop <- next_ b b.stop
let i = abs i in \
let s_len = Bytes.length s in \
let b = Byte.create ~bounded:true i in \
Byte.blit_from b s 0 s_len; \
Byte.length b >= 0 && Byte.length b <= i)
*)
(* resize [b] so that inner capacity is [cap] *) let push_back b e =
let resize b cap elem = A.set b.buf b.stop e;
assert (cap >= A.length b.buf); incr_stop_ b;
let buf' = A.make cap elem in if b.start = b.stop then incr_start_ b; (* overwritten one element *)
(* copy into buf' *) ()
if b.stop >= b.start then (
A.blit b.buf b.start buf' 0 (b.stop - b.start)
) else (
let len_end = A.length b.buf - b.start in
A.blit b.buf b.start buf' 0 len_end;
A.blit b.buf 0 buf' len_end b.stop;
);
b.buf <- buf'
let blit_from_bounded b from_buf o len =
let cap = capacity b - length b in
(* resize if needed, with a constant to amortize *)
if cap < len then (
let new_size =
let desired = A.length b.buf + len + 24 in
min (b.size+1) desired in
resize b new_size (A.get from_buf 0);
let good = capacity b = b.size || capacity b - length b >= len in
assert good;
);
let sub = A.sub from_buf o len in
let iter x =
let capacity = A.length b.buf in
A.set b.buf b.stop x;
if b.stop = capacity-1 then b.stop <- 0 else b.stop <- b.stop + 1;
if b.start = b.stop then
if b.start = capacity-1 then b.start <- 0 else b.start <- b.start + 1
in
A.iter iter sub
let blit_from_unbounded b from_buf o len =
let cap = capacity b - length b in
(* resize if needed, with a constant to amortize *)
if cap < len
then resize b (max (b.size+1) (A.length b.buf + len + 24)) (A.get from_buf 0);
let good = capacity b - length b >= len in
assert good;
if b.stop >= b.start
then (
(* [_______ start xxxxxxxxx stop ______] *)
let len_end = A.length b.buf - b.stop in
if len_end >= len
then (A.blit from_buf o b.buf b.stop len;
b.stop <- b.stop + len)
else (
A.blit from_buf o b.buf b.stop len_end;
A.blit from_buf (o+len_end) b.buf 0 (len-len_end);
b.stop <- len-len_end
)
) else (
(* [xxxxx stop ____________ start xxxxxx] *)
let len_middle = b.start - b.stop in
assert (len_middle >= len);
A.blit from_buf o b.buf b.stop len;
b.stop <- b.stop + len
)
let blit_from b from_buf o len = let blit_from b from_buf o len =
if A.length from_buf = 0 then () else if len = 0 then ()
if b.bounded then else if o + len > A.length from_buf then invalid_arg "CCRingBuffer.blit_from"
blit_from_bounded b from_buf o len else (
else for i=o to o+len-1 do
blit_from_unbounded b from_buf o len push_back b (A.get from_buf i)
done
)
(*$Q (*$Q
(Q.pair Q.printable_string Q.printable_string) (fun (s,s') -> \ a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \
let b' = Byte.copy b in \
try Byte.iteri b (fun i c -> if Byte.get_front b' i <> c then raise Exit); true with Exit -> false)
*)
(*$Q
a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \
Byte.push_back b 'X'; \
Byte.peek_back b = 'X')
*)
(*$Q
(Q.pair a_str a_str) (fun (s,s') -> \
let b = Byte.create (max (String.length s+String.length s') 64) in \
let s = Bytes.of_string s in let s' = Bytes.of_string s' in \ let s = Bytes.of_string s in let s' = Bytes.of_string s' in \
(let b = Byte.create 24 in \
Byte.blit_from b s 0 (Bytes.length s); \ Byte.blit_from b s 0 (Bytes.length s); \
Byte.blit_from b s' 0 (Bytes.length s'); \ Byte.blit_from b s' 0 (Bytes.length s'); \
Byte.length b = Bytes.length s + Bytes.length s')) Byte.length b = Bytes.length s + Bytes.length s')
*) *)
(*$Q (*$Q
(Q.pair Q.printable_string Q.printable_string) (fun (s,s') -> \ (Q.pair a_str a_str) (fun (s,s') -> \
let s = Bytes.of_string s in let s' = Bytes.of_string s' in \ let s = Bytes.of_string s in let s' = Bytes.of_string s' in \
(let b = Byte.create ~bounded:true (Bytes.length s + Bytes.length s') in \ let b = Byte.create (max (Bytes.length s + Bytes.length s') 64) in \
Byte.blit_from b s 0 (Bytes.length s); \ Byte.blit_from b s 0 (Bytes.length s); \
Byte.blit_from b s' 0 (Bytes.length s'); \ Byte.blit_from b s' 0 (Bytes.length s'); \
Byte.length b = Bytes.length s + Bytes.length s')) Byte.length b = Bytes.length s + Bytes.length s')
*) *)
let blit_into b to_buf o len = let blit_into b to_buf o len =
if o+len > A.length to_buf if o+len > A.length to_buf then (
then invalid_arg "CCRingBuffer.blit_into"; invalid_arg "CCRingBuffer.blit_into";
);
if b.stop >= b.start then ( if b.stop >= b.start then (
let n = min (b.stop - b.start) len in let n = min (b.stop - b.start) len in
let _ = A.blit b.buf b.start to_buf o n in A.blit b.buf b.start to_buf o n;
n n
) else ( ) else (
let len_end = A.length b.buf - b.start in let len_end = A.length b.buf - b.start in
@ -396,8 +316,8 @@ module MakeFromArray(A:Array.S) = struct
) )
(*$Q (*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \ a_str (fun s -> let s = Bytes.of_string s in \
let b = Byte.create (Bytes.length s) in \ let b = Byte.create (max 64 (Bytes.length s)) in \
Byte.blit_from b s 0 (Bytes.length s); \ Byte.blit_from b s 0 (Bytes.length s); \
let to_buf = Bytes.create (Bytes.length s) in \ let to_buf = Bytes.create (Bytes.length s) in \
let len = Byte.blit_into b to_buf 0 (Bytes.length s) in \ let len = Byte.blit_into b to_buf 0 (Bytes.length s) in \
@ -410,35 +330,20 @@ module MakeFromArray(A:Array.S) = struct
() ()
(*$Q (*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \ a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \ let s_len = Bytes.length s in \
let b = Byte.create s_len in \ let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \ Byte.blit_from b s 0 s_len; \
Byte.clear b; \ Byte.clear b; \
Byte.length b = 0) Byte.length b = 0)
*) *)
let reset b =
clear b;
b.buf <- A.empty
(*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create s_len in \
Byte.blit_from b s 0 s_len; \
Byte.reset b; \
Byte.length b = 0 && Byte.capacity b = 0)
*)
let is_empty b = b.start = b.stop let is_empty b = b.start = b.stop
(*$Q (*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \ a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \ let s_len = Bytes.length s in \
let b = Byte.create s_len in \ let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \ Byte.blit_from b s 0 s_len; \
Byte.skip b s_len; \ Byte.skip b s_len; \
Byte.is_empty b) Byte.is_empty b)
@ -447,17 +352,15 @@ module MakeFromArray(A:Array.S) = struct
let take_front_exn b = let take_front_exn b =
if b.start = b.stop then raise Empty; if b.start = b.stop then raise Empty;
let c = A.get b.buf b.start in let c = A.get b.buf b.start in
if b.start + 1 = A.length b.buf b.start <- next_ b b.start;
then b.start <- 0
else b.start <- b.start + 1;
c c
let take_front b = try Some (take_front_exn b) with Empty -> None let take_front b = try Some (take_front_exn b) with Empty -> None
(*$Q (*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \ a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \ let s_len = Bytes.length s in \
let b = Byte.create s_len in \ let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \ Byte.blit_from b s 0 s_len; \
try let front = Byte.take_front_exn b in \ try let front = Byte.take_front_exn b in \
front = Bytes.get s 0 with Byte.Empty -> s_len = 0) front = Bytes.get s 0 with Byte.Empty -> s_len = 0)
@ -465,7 +368,7 @@ module MakeFromArray(A:Array.S) = struct
let take_back_exn b = let take_back_exn b =
if b.start = b.stop then raise Empty; if b.start = b.stop then raise Empty;
if b.stop - 1 = 0 if b.stop = 0
then b.stop <- A.length b.buf - 1 then b.stop <- A.length b.buf - 1
else b.stop <- b.stop - 1; else b.stop <- b.stop - 1;
A.get b.buf b.stop A.get b.buf b.stop
@ -473,12 +376,13 @@ module MakeFromArray(A:Array.S) = struct
let take_back b = try Some (take_back_exn b) with Empty -> None let take_back b = try Some (take_back_exn b) with Empty -> None
(*$Q (*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \ a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \ let s_len = Bytes.length s in \
let b = Byte.create s_len in \ let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \ Byte.blit_from b s 0 s_len; \
try let back = Byte.take_back_exn b in \ try let back = Byte.take_back_exn b in \
back = Bytes.get s (Bytes.length s - 1) with Byte.Empty -> s_len = 0) back = Bytes.get s (Bytes.length s - 1) \
with Byte.Empty -> s_len = 0)
*) *)
let junk_front b = let junk_front b =
@ -488,9 +392,9 @@ module MakeFromArray(A:Array.S) = struct
else b.start <- b.start + 1 else b.start <- b.start + 1
(*$Q (*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \ a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \ let s_len = Bytes.length s in \
let b = Byte.create s_len in \ let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \ Byte.blit_from b s 0 s_len; \
try let () = Byte.junk_front b in \ try let () = Byte.junk_front b in \
s_len - 1 = Byte.length b with Byte.Empty -> s_len = 0) s_len - 1 = Byte.length b with Byte.Empty -> s_len = 0)
@ -503,9 +407,9 @@ module MakeFromArray(A:Array.S) = struct
else b.stop <- b.stop - 1 else b.stop <- b.stop - 1
(*$Q (*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \ a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \ let s_len = Bytes.length s in \
let b = Byte.create s_len in \ let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \ Byte.blit_from b s 0 s_len; \
try let () = Byte.junk_back b in \ try let () = Byte.junk_back b in \
s_len - 1 = Byte.length b with Byte.Empty -> s_len = 0) s_len - 1 = Byte.length b with Byte.Empty -> s_len = 0)
@ -513,7 +417,7 @@ module MakeFromArray(A:Array.S) = struct
let skip b len = let skip b len =
if len > length b then ( if len > length b then (
invalid_arg ("CCRingBuffer.skip: " ^ string_of_int len); invalid_arg "CCRingBuffer.skip";
); );
if b.stop >= b.start if b.stop >= b.start
then b.start <- b.start + len then b.start <- b.start + len
@ -525,15 +429,15 @@ module MakeFromArray(A:Array.S) = struct
) )
(*$Q (*$Q
(Q.pair Q.printable_string Q.printable_string) (fun (s,s') -> \ (Q.pair a_str a_str) (fun (s,s') -> \
let s = Bytes.of_string s in let s' = Bytes.of_string s' in \ let s = Bytes.of_string s in let s' = Bytes.of_string s' in \
(let b = Byte.create 24 in \ let b = Byte.create (max (Bytes.length s+Bytes.length s') 64) in \
Byte.blit_from b s 0 (Bytes.length s); \ Byte.blit_from b s 0 (Bytes.length s); \
Byte.blit_from b s' 0 (Bytes.length s'); \ Byte.blit_from b s' 0 (Bytes.length s'); \
let h = Bytes.of_string "hello world" in \ let h = Bytes.of_string "hello world" in \
Byte.blit_from b h 0 (Bytes.length h); (* big enough *) \ Byte.blit_from b h 0 (Bytes.length h); (* big enough *) \
let l = Byte.length b in let l' = l/2 in Byte.skip b l'; \ let l = Byte.length b in let l' = l/2 in Byte.skip b l'; \
Byte.length b + l' = l)) Byte.length b + l' = l)
*) *)
let iter b ~f = let iter b ~f =
@ -553,9 +457,9 @@ module MakeFromArray(A:Array.S) = struct
) )
(*$Q (*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \ a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \ let s_len = Bytes.length s in \
let b = Byte.create s_len in \ let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \ Byte.blit_from b s 0 s_len; \
try Byte.iteri b (fun i c -> if Byte.get_front b i <> c then raise Exit); \ try Byte.iteri b (fun i c -> if Byte.get_front b i <> c then raise Exit); \
true with Exit -> false) true with Exit -> false)
@ -563,29 +467,28 @@ module MakeFromArray(A:Array.S) = struct
let get b i = let get b i =
if b.stop >= b.start if b.stop >= b.start
then then (
if i >= b.stop - b.start if i >= b.stop - b.start then (
then invalid_arg ("CCRingBuffer.get:" ^ string_of_int i) invalid_arg "CCRingBuffer.get"
else A.get b.buf (b.start + i) ) else A.get b.buf (b.start + i)
else ) else (
let len_end = A.length b.buf - b.start in let len_end = A.length b.buf - b.start in
if i < len_end if i < len_end then A.get b.buf (b.start + i)
then A.get b.buf (b.start + i) else if i - len_end > b.stop then (
else if i - len_end > b.stop invalid_arg "CCRingBuffer.get"
then invalid_arg ("CCRingBuffer.get: " ^ string_of_int i) ) else A.get b.buf (i - len_end)
else A.get b.buf (i - len_end) )
let get_front b i = let get_front b i =
if is_empty b then if is_empty b then (
invalid_arg ("CCRingBuffer.get_front: " ^ string_of_int i) invalid_arg "CCRingBuffer.get_front"
else ) else get b i
get b i
(*$Q (*$Q
(Q.pair Q.small_int Q.printable_string) (fun (i, s) -> \ (Q.pair Q.small_int a_str) (fun (i, s) -> \
let s = Bytes.of_string (s ^ " ") in \ let s = Bytes.of_string (s ^ " ") in \
let s_len = Bytes.length s in \ let s_len = Bytes.length s in \
let b = Byte.create s_len in \ let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \ Byte.blit_from b s 0 s_len; \
let index = abs (i mod Byte.length b) in \ let index = abs (i mod Byte.length b) in \
let front = Byte.get_front b index in \ let front = Byte.get_front b index in \
@ -594,15 +497,15 @@ module MakeFromArray(A:Array.S) = struct
let get_back b i = let get_back b i =
let offset = ((length b) - i - 1) in let offset = ((length b) - i - 1) in
if offset < 0 then if offset < 0 then (
raise (Invalid_argument ("CCRingBuffer.get_back:" ^ string_of_int i)) invalid_arg "CCRingBuffer.get_back"
else get b offset ) else get b offset
(*$Q (*$Q
(Q.pair Q.small_int Q.printable_string) (fun (i, s) -> \ (Q.pair Q.small_int a_str) (fun (i, s) -> \
let s = Bytes.of_string (s ^ " ") in \ let s = Bytes.of_string (s ^ " ") in \
let s_len = Bytes.length s in \ let s_len = Bytes.length s in \
let b = Byte.create s_len in \ let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \ Byte.blit_from b s 0 s_len; \
let index = abs (i mod Byte.length b) in \ let index = abs (i mod Byte.length b) in \
let back = Byte.get_back b index in \ let back = Byte.get_back b index in \
@ -613,14 +516,14 @@ module MakeFromArray(A:Array.S) = struct
let to_list b = let to_list b =
let len = length b in let len = length b in
let rec build l i = let rec build l i =
if i < 0 then l else if i < 0 then l else build ((get_front b i)::l) (i-1)
build ((get_front b i)::l) (i-1) in in
build [] (len-1) build [] (len-1)
(*$Q (*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \ a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \ let s_len = Bytes.length s in \
let b = Byte.create s_len in \ let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \ Byte.blit_from b s 0 s_len; \
let l = Byte.to_list b in \ let l = Byte.to_list b in \
let explode s = let rec exp i l = \ let explode s = let rec exp i l = \
@ -629,18 +532,7 @@ module MakeFromArray(A:Array.S) = struct
explode s = l) explode s = l)
*) *)
let push_back b e = blit_from b (A.make 1 e) 0 1 (* TODO: more efficient version, with one or two blit *)
(*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create s_len in \
Byte.blit_from b s 0 s_len; \
Byte.push_back b 'X'; \
Byte.peek_back b = 'X')
*)
(* TODO: more efficient version *)
let append b ~into = let append b ~into =
iter b ~f:(push_back into) iter b ~f:(push_back into)
@ -649,9 +541,9 @@ module MakeFromArray(A:Array.S) = struct
else A.get b.buf b.start else A.get b.buf b.start
(*$Q (*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \ a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \ let s_len = Bytes.length s in \
let b = Byte.create s_len in \ let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \ Byte.blit_from b s 0 s_len; \
try let back = Byte.peek_front b in \ try let back = Byte.peek_front b in \
back = Bytes.get s 0 with Byte.Empty -> s_len = 0) back = Bytes.get s 0 with Byte.Empty -> s_len = 0)
@ -659,13 +551,15 @@ module MakeFromArray(A:Array.S) = struct
let peek_back b = if is_empty b let peek_back b = if is_empty b
then raise Empty then raise Empty
else A.get b.buf else (
(if b.stop = 0 then capacity b - 1 else b.stop-1) let i = if b.stop = 0 then A.length b.buf - 1 else b.stop-1 in
A.get b.buf i
)
(*$Q (*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \ a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \ let s_len = Bytes.length s in \
let b = Byte.create s_len in \ let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \ Byte.blit_from b s 0 s_len; \
try let back = Byte.peek_back b in \ try let back = Byte.peek_back b in \
back = Bytes.get s (s_len - 1) with Byte.Empty -> s_len = 0) back = Bytes.get s (s_len - 1) with Byte.Empty -> s_len = 0)
@ -677,16 +571,13 @@ module MakeFromArray(A:Array.S) = struct
b b
let to_array b = let to_array b =
if is_empty b then A.empty let a = A.create (length b) in
else (
let a = A.make (length b) (peek_front b) in
let n = blit_into b a 0 (length b) in let n = blit_into b a 0 (length b) in
assert (n = length b); assert (n = length b);
a a
)
(*$Q (*$Q
Q.printable_string (fun s -> let s = Bytes.of_string s in \ a_str (fun s -> let s = Bytes.of_string s in \
let b = Byte.of_array s in let s' = Byte.to_array b in \ let b = Byte.of_array s in let s' = Byte.to_array b in \
s = s') s = s')
*) *)
@ -694,17 +585,20 @@ end
module Byte = MakeFromArray(Array.Byte) module Byte = MakeFromArray(Array.Byte)
module Make(Elt:sig type t end) = MakeFromArray(Array.Make(Elt)) module Make(Elt:sig
type t
val dummy : t
end) = MakeFromArray(Array.Make(Elt))
(*$inject (*$inject
module BI = CCRingBuffer.Make(struct type t = int end) module BI = CCRingBuffer.Make(struct type t = int let dummy=0 end)
*) *)
(* try to trigger an error on resize (* try to trigger an error on resize
see issue #126 *) see issue #126 *)
(*$R (*$R
let b = BI.create ~bounded:true 50 in let b = BI.create 50 in
let st = Random.State.make [| 0 |] in let st = Random.State.make [| 0 |] in
for _i = 1 to 100_000 do for _i = 1 to 100_000 do
if Random.State.float st 1.0 < 0.5 then if Random.State.float st 1.0 < 0.5 then
@ -713,3 +607,142 @@ module Make(Elt:sig type t end) = MakeFromArray(Array.Make(Elt))
let _ = BI.take_front b in () let _ = BI.take_front b in ()
done done
*) *)
(*$inject
module BS = CCRingBuffer.Byte
type op =
| Push_back of char
| Take_front
| Take_back
| Blit of string * int * int
let str_of_op = function
| Push_back c -> Printf.sprintf "push_back(%C)" c
| Take_front -> Printf.sprintf "take_front"
| Take_back -> Printf.sprintf "take_back"
| Blit (s,i,len) -> Printf.sprintf "blit(%S,%d,%d)" s i len
let push_back c = Push_back c
let blit s i len =
if i<0 || len<0 || i+len > String.length s then (
failwith ("wrong blit: " ^ str_of_op (Blit (s,i,len)));
);
Blit (s,i,len)
let shrink_op =
let open Q.Iter in
function
| Push_back c -> Q.Shrink.char c >|= push_back
| Take_front | Take_back -> empty
| Blit (s,i,len) ->
let s_i =
Q.Shrink.int i >>= fun i' ->
assert (i' <= i && i' + len <= String.length s);
if i' <= 0 then empty else return (blit s i' len)
and s_len =
Q.Shrink.int len >>= fun len'->
assert (len' <= len && i + len' <= String.length s);
if len' <= 0 then empty else return (blit s i len')
and s_s =
Q.Shrink.string s >>= fun s' ->
if i+len > String.length s' then empty else return (blit s' i len)
in
append s_i (append s_len s_s)
let rec len_op size acc = function
| Push_back _ -> min size (acc + 1)
| Take_front | Take_back -> max (acc-1) 0
| Blit (_,_,len) -> min size (acc + len)
let apply_op b = function
| Push_back c -> BS.push_back b c; None
| Take_front -> BS.take_front b
| Take_back -> BS.take_back b
| Blit (s,i,len) ->
assert(i+len <= String.length s);
BS.blit_from b (Bytes.unsafe_of_string s) i len; None
let gen_op =
let open Q.Gen in
let g_blit =
string_size ~gen:g_char (5--20) >>= fun s ->
(0 -- String.length s) >>= fun len ->
assert (len >= 0 && len <= String.length s);
(0--(String.length s-len)) >|= fun i ->
blit s i len
in
frequency
[ 3, return Take_back;
3, return Take_front;
1, g_blit;
2, map push_back g_char;
]
let arb_op =
Q.make
~shrink:shrink_op
~print:str_of_op
gen_op
let arb_ops = Q.list arb_op
module L_impl = struct
type t = {
size: int;
mutable l: char list;
}
let create size = {size; l=[]}
let normalize_ b =
let n = List.length b.l in
if n>b.size then b.l <- CCList.drop (n-b.size) b.l
let push_back b c = b.l <- b.l @ [c]; normalize_ b
let take_front b = match b.l with
| [] -> None
| c :: l -> b.l <- l; Some c
let take_back b =
let n = List.length b.l in
if n=0 then None
else (
let init, last = CCList.take_drop (n-1) b.l in
let x = List.hd last in
b.l <- init;
Some x
)
let blit b s i len =
for j=i to i+len-1 do push_back b (String.get s j) done
let apply_op b = function
| Push_back c -> push_back b c; None
| Take_front -> take_front b
| Take_back -> take_back b
| Blit (s,i,len) -> blit b s i len; None
let to_list b = b.l
end
*)
(* check that a lot of operations can be applied without failure,
and that the result has correct length *)
(*$QR
arb_ops (fun ops ->
let size = 64 in
let b = BS.create size in
List.iter (fun o-> ignore (apply_op b o)) ops;
BS.length b = List.fold_left (len_op size) 0 ops)
*)
(* check identical behavior with list implem *)
(*$QR
arb_ops (fun ops ->
let size = 64 in
let b = BS.create size in
let l = L_impl.create size in
let l1 = CCList.filter_map (apply_op b) ops in
let l2 = CCList.filter_map (L_impl.apply_op l) ops in
l1=l2 && BS.to_list b = L_impl.to_list l)
*)

View file

@ -5,12 +5,15 @@
(** {1 Circular Buffer (Deque)} (** {1 Circular Buffer (Deque)}
Useful for IO, or as a general-purpose alternative to {!Queue} when Useful for IO, or as a bounded-size alternative to {!Queue} when
batch operations are needed. batch operations are needed.
{b status: experimental} {b status: experimental}
@since 0.9 @since 0.9
Change in the API to provide only a bounded buffer
@since NEXT_RELEASE
*) *)
(** {2 Underlying Array} *) (** {2 Underlying Array} *)
@ -24,11 +27,8 @@ module Array : sig
(** The type of an array instance *) (** The type of an array instance *)
type t type t
val empty : t val create : int -> t
(** The empty array *) (** Make an array of the given size, filled with dummy elements *)
val make: int -> elt -> t
(** [make s e] makes an array of size [s] with [e] elements *)
val length: t -> int val length: t -> int
(** [length t] gets the total number of elements currently in [t] *) (** [length t] gets the total number of elements currently in [t] *)
@ -60,7 +60,7 @@ module Array : sig
S with type elt = char and type t = Bytes.t S with type elt = char and type t = Bytes.t
(** Makes an array given an arbitrary element type *) (** Makes an array given an arbitrary element type *)
module Make(Elt:sig type t end) : module Make(Elt:sig type t val dummy : t end) :
S with type elt = Elt.t and type t = Elt.t array S with type elt = Elt.t and type t = Elt.t array
end end
@ -72,16 +72,17 @@ module type S = sig
(** The module type of Array for this ring buffer *) (** The module type of Array for this ring buffer *)
module Array : Array.S module Array : Array.S
(** Defines the ring buffer type, with both bounded and (** Defines the bounded ring buffer type *)
unbounded flavors *)
type t type t
(** Raised in querying functions when the buffer is empty *) (** Raised in querying functions when the buffer is empty *)
exception Empty exception Empty
val create : ?bounded:bool -> int -> t val create : int -> t
(** [create ?bounded size] creates a new buffer with given size. (** [create size] creates a new bounded buffer with given size.
Defaults to [bounded=false]. *) The underlying array is allocated immediately and no further (large)
allocation will happen from now on.
@raise Invalid_argument if the arguments is [< 1] *)
val copy : t -> t val copy : t -> t
(** Make a fresh copy of the buffer. *) (** Make a fresh copy of the buffer. *)
@ -89,26 +90,25 @@ module type S = sig
val capacity : t -> int val capacity : t -> int
(** Length of the inner buffer. *) (** Length of the inner buffer. *)
val max_capacity : t -> int option
(** Maximum length of the inner buffer, or [None] if unbounded. *)
val length : t -> int val length : t -> int
(** Number of elements currently stored in the buffer. *) (** Number of elements currently stored in the buffer. *)
val blit_from : t -> Array.t -> int -> int -> unit val blit_from : t -> Array.t -> int -> int -> unit
(** [blit_from buf from_buf o len] copies the slice [o, ... o + len - 1] from (** [blit_from buf from_buf o len] copies the slice [o, ... o + len - 1] from
a input buffer [from_buf] to the end of the buffer. a input buffer [from_buf] to the end of the buffer.
If the slice is too large for the buffer, only the last part of the array
will be copied.
@raise Invalid_argument if [o,len] is not a valid slice of [s] *) @raise Invalid_argument if [o,len] is not a valid slice of [s] *)
val blit_into : t -> Array.t -> int -> int -> int val blit_into : t -> Array.t -> int -> int -> int
(** [blit_into buf to_buf o len] copies at most [len] elements from [buf] (** [blit_into buf to_buf o len] copies at most [len] elements from [buf]
into [to_buf] starting at offset [o] in [s]. into [to_buf] starting at offset [o] in [s].
@return the number of elements actually copied ([min len (length buf)]). @return the number of elements actually copied ([min len (length buf)]).
@raise Invalid_argument if [o,len] is not a valid slice of [s] *) @raise Invalid_argument if [o,len] is not a valid slice of [s]. *)
val append : t -> into:t -> unit val append : t -> into:t -> unit
(** [append b ~into] copies all data from [b] and adds it at the (** [append b ~into] copies all data from [b] and adds it at the
end of [into] *) end of [into]. Erases data of [into] if there is not enough room. *)
val to_list : t -> Array.elt list val to_list : t -> Array.elt list
(** Extract the current content into a list *) (** Extract the current content into a list *)
@ -116,9 +116,6 @@ module type S = sig
val clear : t -> unit val clear : t -> unit
(** Clear the content of the buffer. Doesn't actually destroy the content. *) (** Clear the content of the buffer. Doesn't actually destroy the content. *)
val reset : t -> unit
(** Clear the content of the buffer, and also resize it to a default size *)
val is_empty :t -> bool val is_empty :t -> bool
(** Is the buffer empty (i.e. contains no elements)? *) (** Is the buffer empty (i.e. contains no elements)? *)
@ -157,25 +154,25 @@ module type S = sig
otherwise the oldest elements are replaced first. *) otherwise the oldest elements are replaced first. *)
val peek_front : t -> Array.elt val peek_front : t -> Array.elt
(** First value from front of [t]. (** First value from front of [t], without modification.
@raise Empty if buffer is empty. *) @raise Empty if buffer is empty. *)
val peek_back : t -> Array.elt val peek_back : t -> Array.elt
(** Get the last value from back of [t]. (** Get the last value from back of [t], without modification.
@raise Empty if buffer is empty. *) @raise Empty if buffer is empty. *)
val take_back : t -> Array.elt option val take_back : t -> Array.elt option
(** Take the last value from back of [t], if any *) (** Take and remove the last value from back of [t], if any *)
val take_back_exn : t -> Array.elt val take_back_exn : t -> Array.elt
(** Take the last value from back of [t]. (** Take and remove the last value from back of [t].
@raise Empty if buffer is already empty. *) @raise Empty if buffer is already empty. *)
val take_front : t -> Array.elt option val take_front : t -> Array.elt option
(** Take the first value from front of [t], if any *) (** Take and remove the first value from front of [t], if any *)
val take_front_exn : t -> Array.elt val take_front_exn : t -> Array.elt
(** Take the first value from front of [t]. (** Take and remove the first value from front of [t].
@raise Empty if buffer is already empty. *) @raise Empty if buffer is already empty. *)
val of_array : Array.t -> t val of_array : Array.t -> t
@ -195,4 +192,7 @@ module Byte : S with module Array = Array.Byte
module MakeFromArray(A : Array.S) : S with module Array = A module MakeFromArray(A : Array.S) : S with module Array = A
(** Buffer using regular arrays *) (** Buffer using regular arrays *)
module Make(X : sig type t end) : S with type Array.elt = X.t and type Array.t = X.t array module Make(X : sig
type t
val dummy : t
end) : S with type Array.elt = X.t and type Array.t = X.t array