Module CCFun

Basic Functions

val (|>) : 'a ‑> ('a ‑> 'b) ‑> 'b

Pipeline. x |> f is the same as f x.

val compose : ('a ‑> 'b) ‑> ('b ‑> 'c) ‑> 'a ‑> 'c

Composition

val compose_binop : ('a ‑> 'b) ‑> ('b ‑> 'b ‑> 'c) ‑> 'a ‑> 'a ‑> 'c

compose_binop f g is fun x y -> g (f x) (f y) Example (partial order): List.sort (compose_binop fst CCInt.compare) [1, true; 2, false; 1, false]

val (%>) : ('a ‑> 'b) ‑> ('b ‑> 'c) ‑> 'a ‑> 'c

Alias to compose

val (@@) : ('a ‑> 'b) ‑> 'a ‑> 'b

f @@ x is the same as f x, but right-associative.

val id : 'a ‑> 'a

Identity function

val const : 'a ‑> 'b ‑> 'a

const x y = x for any y

val flip : ('a ‑> 'b ‑> 'c) ‑> 'b ‑> 'a ‑> 'c

Flip arguments

val curry : (('a * 'b) ‑> 'c) ‑> 'a ‑> 'b ‑> 'c
val uncurry : ('a ‑> 'b ‑> 'c) ‑> ('a * 'b) ‑> 'c
val tap : ('a ‑> _) ‑> 'a ‑> 'a

tap f x evaluates f x, discards it, then returns x. Useful in a pipeline, for instance:

CCArray.(1 -- 10)
      |> tap CCArray.shuffle
      |> tap @@ CCArray.sort Pervasives.compare
val (%) : ('b ‑> 'c) ‑> ('a ‑> 'b) ‑> 'a ‑> 'c

Mathematical composition

val lexicographic : ('a ‑> 'a ‑> int) ‑> ('a ‑> 'a ‑> int) ‑> 'a ‑> 'a ‑> int

Lexicographic combination of comparison functions

val finally : h:(unit ‑> _) ‑> f:(unit ‑> 'a) ‑> 'a

finally h f calls f () and returns its result. If it raises, the same exception is raised; in any case, h () is called after f () terminates.

val finally1 : h:(unit ‑> _) ‑> ('a ‑> 'b) ‑> 'a ‑> 'b

finally1 ~h f x is the same as f x, but after the computation, h () is called whether f x rose an exception or not.

val finally2 : h:(unit ‑> _) ‑> ('a ‑> 'b ‑> 'c) ‑> 'a ‑> 'b ‑> 'c

finally2 ~h f x y is the same as f x y, but after the computation, h () is called whether f x y rose an exception or not.

val opaque_identity : 'a ‑> 'a

opaque_identity x is like x, but prevents Flambda from using x's definition for optimizing it (flambda is an optimization/inlining pass in OCaml >= 4.03).

Monad

Functions with a fixed domain are monads in their codomain

module Monad : functor (X : sig ... end) -> sig ... end