(* * CCRingBuffer - Polymorphic circular buffer with * deque semantics for accessing both the head and tail. * * Copyright (C) 2015 Simon Cruanes, Carmelo Piccione * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version, * with the special exception on linking described in file LICENSE. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *) (** Polymorphic Circular Buffer for IO *) module Array = struct (** The abstract type for arrays *) module type S = sig (** The element type *) type elt (** The type of an array instance *) type t val empty : t (** The empty array *) val make: int -> elt -> t (** [make s e] makes an array of size [s] with [e] elements *) val length: t -> int (** [length t] gets the total number of elements currently in [t] *) val get: t -> int -> elt (** [get t i] gets the element at position [i] *) val set: t -> int -> elt -> unit (** [set t i e] sets the element at position [i] to [e] *) val sub: t -> int -> int -> t (** [sub t i len] gets the subarray of [t] from position [i] to [i + len] *) val copy : t -> t (** [copy t] makes a fresh copy of the array [t] *) val blit : t -> int -> t -> int -> int -> unit (** [blit t s arr i len] copies [len] elements from [arr] starting at [i] to position [s] from [t] *) val iter : (elt -> unit) -> t -> unit (** [iter f t] iterates over the array [t] invoking [f] with the current element, in array order *) end module Byte : S with type elt = char and type t = Bytes.t = struct type elt = char include Bytes end module Make(Elt:sig type t end) : S with type elt = Elt.t and type t = Elt.t array = struct type elt = Elt.t type t = Elt.t array let make = Array.make let length = Array.length let get = Array.get let set = Array.set let copy = Array.copy let blit = Array.blit let iter = Array.iter let sub = Array.sub let empty = Array.of_list [] end end module type S = sig (** The module type of Array for this ring buffer *) module Array : Array.S (** Defines the ring buffer type, with both bounded and unbounded flavors *) type t (** Raised in querying functions when the buffer is empty *) exception Empty val create : ?bounded:bool -> int -> t (** [create ?bounded size] creates a new buffer with given size. Defaults to [bounded=false]. *) val copy : t -> t (** Make a fresh copy of the buffer. *) val capacity : t -> int (** Length of the inner buffer. *) val max_capacity : t -> int option (** Maximum length of the inner buffer, or [None] if unbounded. *) val length : t -> int (** Number of elements currently stored in the buffer. *) val blit_from : t -> Array.t -> int -> int -> unit (** [blit_from buf from_buf o len] copies the slice [o, ... o + len - 1] from a input buffer [from_buf] to the end of the buffer. @raise Invalid_argument if [o,len] is not a valid slice of [s] *) val blit_into : t -> Array.t -> int -> int -> int (** [blit_into buf to_buf o len] copies at most [len] elements from [buf] into [to_buf] starting at offset [o] in [s]. @return the number of elements actually copied ([min len (length buf)]). @raise Invalid_argument if [o,len] is not a valid slice of [s] *) val append : t -> into:t -> unit (** [append b ~into] copies all data from [b] and adds it at the end of [into] *) val to_list : t -> Array.elt list (** Extract the current content into a list *) val clear : t -> unit (** Clear the content of the buffer. Doesn't actually destroy the content. *) val reset : t -> unit (** Clear the content of the buffer, and also resize it to a default size *) val is_empty :t -> bool (** Is the buffer empty (i.e. contains no elements)? *) val junk_front : t -> unit (** Drop the front element from [t]. @raise Empty if the buffer is already empty. *) val junk_back : t -> unit (** Drop the back element from [t]. @raise Empty if the buffer is already empty. *) val skip : t -> int -> unit (** [skip b len] removes [len] elements from the front of [b]. @raise Invalid_argument if [len > length b]. *) val iter : t -> f:(Array.elt -> unit) -> unit (** [iter b ~f] calls [f i t] for each element [t] in [buf] *) val iteri : t -> f:(int -> Array.elt -> unit) -> unit (** [iteri b ~f] calls [f i t] for each element [t] in [buf], with [i] being its relative index within [buf]. *) val get_front : t -> int -> Array.elt (** [get_front buf i] returns the [i]-th element of [buf] from the front, ie the one returned by [take_front buf] after [i-1] calls to [junk_front buf]. @raise Invalid_argument if the index is invalid (> [length buf]) *) val get_back : t -> int -> Array.elt (** [get_back buf i] returns the [i]-th element of [buf] from the back, ie the one returned by [take_back buf] after [i-1] calls to [junk_back buf]. @raise Invalid_argument if the index is invalid (> [length buf]) *) val push_back : t -> Array.elt -> unit (** Push value at the back of [t]. If [t.bounded=false], the buffer will grow as needed, otherwise the oldest elements are replaced first. *) val peek_front : t -> Array.elt (** First value from front of [t]. @raise Empty if buffer is empty. *) val peek_back : t -> Array.elt (** Get the last value from back of [t]. @raise Empty if buffer is empty. *) val take_back : t -> Array.elt option (** Take the last value from back of [t], if any *) val take_back_exn : t -> Array.elt (** Take the last value from back of [t]. @raise Empty if buffer is already empty. *) val take_front : t -> Array.elt option (** Take the first value from front of [t], if any *) val take_front_exn : t -> Array.elt (** Take the first value from front of [t]. @raise Empty if buffer is already empty. *) val of_array : Array.t -> t (** Create a buffer from an initial array, but doesn't take ownership of it (stills allocates a new internal array) *) val to_array : t -> Array.t (** Create an array from the elements, in order. @since 0.11 *) end module MakeFromArray(A:Array.S) = struct module Array = A type t = { mutable start : int; mutable stop : int; (* excluded *) mutable buf : Array.t; bounded : bool; size : int } exception Empty let create ?(bounded=false) size = { start=0; stop=0; bounded; size; buf = A.empty } let copy b = { b with buf=A.copy b.buf; } (*$Q Q.printable_string (fun s -> let s = Bytes.of_string s in \ let s_len = Bytes.length s in \ let b = Byte.create s_len in \ Byte.blit_from b s 0 s_len; \ let b' = Byte.copy b in \ try Byte.iteri b (fun i c -> if Byte.get_front b' i <> c then raise Exit); true with Exit -> false) *) (*$T let b = Byte.of_array (Bytes.of_string "abc") in \ let b' = Byte.copy b in \ Byte.clear b; \ Byte.to_array b' = (Bytes.of_string "abc") && Byte.to_array b = Bytes.empty *) let capacity b = let len = A.length b.buf in match len with 0 -> 0 | l -> l - 1 (*$Q Q.printable_string (fun s -> let s = Bytes.of_string s in \ let s_len = Bytes.length s in \ let b = Byte.create s_len in \ Byte.blit_from b s 0 s_len; \ Byte.capacity b >= s_len) *) (*$Q (Q.pair Q.small_int Q.printable_string) (fun (i, s) -> let s = Bytes.of_string s in \ let i = abs i in \ let s_len = Bytes.length s in \ let b = Byte.create ~bounded:true i in \ Byte.blit_from b s 0 s_len; \ Byte.capacity b <= i) *) let max_capacity b = if b.bounded then Some b.size else None (*$Q Q.small_int (fun i -> \ let i = abs i in \ let b = Byte.create i in \ Byte.max_capacity b = None) *) (*$Q Q.small_int (fun i -> \ let i = abs i in \ let b = Byte.create ~bounded:true i in \ Byte.max_capacity b = Some i) *) let length b = if b.stop >= b.start then b.stop - b.start else (A.length b.buf - b.start) + b.stop (*$Q (Q.pair Q.small_int Q.printable_string) (fun (i, s) -> let s = Bytes.of_string s in \ let i = abs i in \ let s_len = Bytes.length s in \ let b = Byte.create i in \ Byte.blit_from b s 0 s_len; \ Byte.length b = s_len) *) (*$Q (Q.pair Q.small_int Q.printable_string) (fun (i, s) -> let s = Bytes.of_string s in \ let i = abs i in \ let s_len = Bytes.length s in \ let b = Byte.create ~bounded:true i in \ Byte.blit_from b s 0 s_len; \ Byte.length b >= 0 && Byte.length b <= i) *) (* resize [b] so that inner capacity is [cap] *) let resize b cap elem = assert (cap >= A.length b.buf); let buf' = A.make cap elem in (* copy into buf' *) if b.stop >= b.start then A.blit b.buf b.start buf' 0 (b.stop - b.start) else begin let len_end = A.length b.buf - b.start in A.blit b.buf b.start buf' 0 len_end; A.blit b.buf 0 buf' len_end b.stop; end; b.buf <- buf' let blit_from_bounded b from_buf o len = let cap = capacity b - length b in (* resize if needed, with a constant to amortize *) if cap < len then ( let new_size = let desired = A.length b.buf + len + 24 in min (b.size+1) desired in resize b new_size (A.get from_buf 0); let good = capacity b = b.size || capacity b - length b >= len in assert good; ); let sub = A.sub from_buf o len in let iter x = let capacity = A.length b.buf in A.set b.buf b.stop x; if b.stop = capacity-1 then b.stop <- 0 else b.stop <- b.stop + 1; if b.start = b.stop then if b.start = capacity-1 then b.start <- 0 else b.start <- b.start + 1 in A.iter iter sub let blit_from_unbounded b from_buf o len = let cap = capacity b - length b in (* resize if needed, with a constant to amortize *) if cap < len then resize b (max (b.size+1) (A.length b.buf + len + 24)) (A.get from_buf 0); let good = capacity b - length b >= len in assert good; if b.stop >= b.start then (* [_______ start xxxxxxxxx stop ______] *) let len_end = A.length b.buf - b.stop in if len_end >= len then (A.blit from_buf o b.buf b.stop len; b.stop <- b.stop + len) else (A.blit from_buf o b.buf b.stop len_end; A.blit from_buf (o+len_end) b.buf 0 (len-len_end); b.stop <- len-len_end) else begin (* [xxxxx stop ____________ start xxxxxx] *) let len_middle = b.start - b.stop in assert (len_middle >= len); A.blit from_buf o b.buf b.stop len; b.stop <- b.stop + len end; () let blit_from b from_buf o len = if A.length from_buf = 0 then () else if b.bounded then blit_from_bounded b from_buf o len else blit_from_unbounded b from_buf o len (*$Q (Q.pair Q.printable_string Q.printable_string) (fun (s,s') -> \ let s = Bytes.of_string s in let s' = Bytes.of_string s' in \ (let b = Byte.create 24 in \ Byte.blit_from b s 0 (Bytes.length s); \ Byte.blit_from b s' 0 (Bytes.length s'); \ Byte.length b = Bytes.length s + Bytes.length s')) *) (*$Q (Q.pair Q.printable_string Q.printable_string) (fun (s,s') -> \ let s = Bytes.of_string s in let s' = Bytes.of_string s' in \ (let b = Byte.create ~bounded:true (Bytes.length s + Bytes.length s') in \ Byte.blit_from b s 0 (Bytes.length s); \ Byte.blit_from b s' 0 (Bytes.length s'); \ Byte.length b = Bytes.length s + Bytes.length s')) *) let blit_into b to_buf o len = if o+len > A.length to_buf then invalid_arg "CCRingBuffer.blit_into"; if b.stop >= b.start then let n = min (b.stop - b.start) len in let _ = A.blit b.buf b.start to_buf o n in n else begin let len_end = A.length b.buf - b.start in A.blit b.buf b.start to_buf o (min len_end len); if len_end >= len then len (* done *) else begin let n = min b.stop (len - len_end) in A.blit b.buf 0 to_buf (o+len_end) n; n + len_end end end (*$Q Q.printable_string (fun s -> let s = Bytes.of_string s in \ let b = Byte.create (Bytes.length s) in \ Byte.blit_from b s 0 (Bytes.length s); \ let to_buf = Bytes.create (Bytes.length s) in \ let len = Byte.blit_into b to_buf 0 (Bytes.length s) in \ to_buf = s && len = Bytes.length s) *) let clear b = b.stop <- 0; b.start <- 0; () (*$Q Q.printable_string (fun s -> let s = Bytes.of_string s in \ let s_len = Bytes.length s in \ let b = Byte.create s_len in \ Byte.blit_from b s 0 s_len; \ Byte.clear b; \ Byte.length b = 0) *) let reset b = clear b; b.buf <- A.empty (*$Q Q.printable_string (fun s -> let s = Bytes.of_string s in \ let s_len = Bytes.length s in \ let b = Byte.create s_len in \ Byte.blit_from b s 0 s_len; \ Byte.reset b; \ Byte.length b = 0 && Byte.capacity b = 0) *) let is_empty b = b.start = b.stop (*$Q Q.printable_string (fun s -> let s = Bytes.of_string s in \ let s_len = Bytes.length s in \ let b = Byte.create s_len in \ Byte.blit_from b s 0 s_len; \ Byte.skip b s_len; \ Byte.is_empty b) *) let take_front_exn b = if b.start = b.stop then raise Empty; let c = A.get b.buf b.start in if b.start + 1 = A.length b.buf then b.start <- 0 else b.start <- b.start + 1; c let take_front b = try Some (take_front_exn b) with Empty -> None (*$Q Q.printable_string (fun s -> let s = Bytes.of_string s in \ let s_len = Bytes.length s in \ let b = Byte.create s_len in \ Byte.blit_from b s 0 s_len; \ try let front = Byte.take_front_exn b in \ front = Bytes.get s 0 with Byte.Empty -> s_len = 0) *) let take_back_exn b = if b.start = b.stop then raise Empty; if b.stop - 1 = 0 then b.stop <- A.length b.buf - 1 else b.stop <- b.stop - 1; A.get b.buf b.stop let take_back b = try Some (take_back_exn b) with Empty -> None (*$Q Q.printable_string (fun s -> let s = Bytes.of_string s in \ let s_len = Bytes.length s in \ let b = Byte.create s_len in \ Byte.blit_from b s 0 s_len; \ try let back = Byte.take_back_exn b in \ back = Bytes.get s (Bytes.length s - 1) with Byte.Empty -> s_len = 0) *) let junk_front b = if b.start = b.stop then raise Empty; if b.start + 1 = A.length b.buf then b.start <- 0 else b.start <- b.start + 1 (*$Q Q.printable_string (fun s -> let s = Bytes.of_string s in \ let s_len = Bytes.length s in \ let b = Byte.create s_len in \ Byte.blit_from b s 0 s_len; \ try let () = Byte.junk_front b in \ s_len - 1 = Byte.length b with Byte.Empty -> s_len = 0) *) let junk_back b = if b.start = b.stop then raise Empty; if b.stop = 0 then b.stop <- A.length b.buf - 1 else b.stop <- b.stop - 1 (*$Q Q.printable_string (fun s -> let s = Bytes.of_string s in \ let s_len = Bytes.length s in \ let b = Byte.create s_len in \ Byte.blit_from b s 0 s_len; \ try let () = Byte.junk_back b in \ s_len - 1 = Byte.length b with Byte.Empty -> s_len = 0) *) let skip b len = if len > length b then invalid_arg ("CCRingBuffer.skip: " ^ string_of_int len); if b.stop >= b.start then b.start <- b.start + len else let len_end = A.length b.buf - b.start in if len > len_end then b.start <- len-len_end (* wrap to the beginning *) else b.start <- b.start + len (*$Q (Q.pair Q.printable_string Q.printable_string) (fun (s,s') -> \ let s = Bytes.of_string s in let s' = Bytes.of_string s' in \ (let b = Byte.create 24 in \ Byte.blit_from b s 0 (Bytes.length s); \ Byte.blit_from b s' 0 (Bytes.length s'); \ let h = Bytes.of_string "hello world" in \ Byte.blit_from b h 0 (Bytes.length h); (* big enough *) \ let l = Byte.length b in let l' = l/2 in Byte.skip b l'; \ Byte.length b + l' = l)) *) let iter b ~f = if b.stop >= b.start then for i = b.start to b.stop - 1 do f (A.get b.buf i) done else ( for i = b.start to A.length b.buf -1 do f (A.get b.buf i) done; for i = 0 to b.stop - 1 do f (A.get b.buf i) done; ) let iteri b ~f = if b.stop >= b.start then for i = b.start to b.stop - 1 do f i (A.get b.buf i) done else ( for i = b.start to A.length b.buf -1 do f i (A.get b.buf i) done; for i = 0 to b.stop - 1 do f i (A.get b.buf i) done; ) (*$Q Q.printable_string (fun s -> let s = Bytes.of_string s in \ let s_len = Bytes.length s in \ let b = Byte.create s_len in \ Byte.blit_from b s 0 s_len; \ try Byte.iteri b (fun i c -> if Byte.get_front b i <> c then raise Exit); \ true with Exit -> false) *) let get b i = if b.stop >= b.start then if i >= b.stop - b.start then invalid_arg ("CCRingBuffer.get:" ^ string_of_int i) else A.get b.buf (b.start + i) else let len_end = A.length b.buf - b.start in if i < len_end then A.get b.buf (b.start + i) else if i - len_end > b.stop then invalid_arg ("CCRingBuffer.get: " ^ string_of_int i) else A.get b.buf (i - len_end) let get_front b i = if is_empty b then invalid_arg ("CCRingBuffer.get_front: " ^ string_of_int i) else get b i (*$Q (Q.pair Q.small_int Q.printable_string) (fun (i, s) -> \ let s = Bytes.of_string (s ^ " ") in \ let s_len = Bytes.length s in \ let b = Byte.create s_len in \ Byte.blit_from b s 0 s_len; \ let index = abs (i mod Byte.length b) in \ let front = Byte.get_front b index in \ front = Bytes.get s index) *) let get_back b i = let offset = ((length b) - i - 1) in if offset < 0 then raise (Invalid_argument ("CCRingBuffer.get_back:" ^ string_of_int i)) else get b offset (*$Q (Q.pair Q.small_int Q.printable_string) (fun (i, s) -> \ let s = Bytes.of_string (s ^ " ") in \ let s_len = Bytes.length s in \ let b = Byte.create s_len in \ Byte.blit_from b s 0 s_len; \ let index = abs (i mod Byte.length b) in \ let back = Byte.get_back b index in \ back = Bytes.get s (s_len - index - 1)) *) let to_list b = let len = length b in let rec build l i = if i < 0 then l else build ((get_front b i)::l) (i-1) in build [] (len-1) (*$Q Q.printable_string (fun s -> let s = Bytes.of_string s in \ let s_len = Bytes.length s in \ let b = Byte.create s_len in \ Byte.blit_from b s 0 s_len; \ let l = Byte.to_list b in \ let explode s = let rec exp i l = \ if i < 0 then l else exp (i - 1) (Bytes.get s i :: l) in \ exp (Bytes.length s - 1) [] in \ explode s = l) *) let push_back b e = blit_from b (A.make 1 e) 0 1 (*$Q Q.printable_string (fun s -> let s = Bytes.of_string s in \ let s_len = Bytes.length s in \ let b = Byte.create s_len in \ Byte.blit_from b s 0 s_len; \ Byte.push_back b 'X'; \ Byte.peek_back b = 'X') *) (* TODO: more efficient version *) let append b ~into = iter b ~f:(push_back into) let peek_front b = if is_empty b then raise Empty else A.get b.buf b.start (*$Q Q.printable_string (fun s -> let s = Bytes.of_string s in \ let s_len = Bytes.length s in \ let b = Byte.create s_len in \ Byte.blit_from b s 0 s_len; \ try let back = Byte.peek_front b in \ back = Bytes.get s 0 with Byte.Empty -> s_len = 0) *) let peek_back b = if is_empty b then raise Empty else A.get b.buf (if b.stop = 0 then capacity b - 1 else b.stop-1) (*$Q Q.printable_string (fun s -> let s = Bytes.of_string s in \ let s_len = Bytes.length s in \ let b = Byte.create s_len in \ Byte.blit_from b s 0 s_len; \ try let back = Byte.peek_back b in \ back = Bytes.get s (s_len - 1) with Byte.Empty -> s_len = 0) *) let of_array a = let b = create (max (A.length a) 16) in blit_from b a 0 (A.length a); b let to_array b = if is_empty b then A.empty else ( let a = A.make (length b) (peek_front b) in let n = blit_into b a 0 (length b) in assert (n = length b); a ) (*$Q Q.printable_string (fun s -> let s = Bytes.of_string s in \ let b = Byte.of_array s in let s' = Byte.to_array b in \ s = s') *) end module Byte = MakeFromArray(Array.Byte) module Make(Elt:sig type t end) = MakeFromArray(Array.Make(Elt))