(* Copyright (c) 2013, Simon Cruanes All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *) (** {1 Bijective Serializer/Deserializer} *) type _ t = | Unit : unit t | String : string t | Int : int t | Bool : bool t | Float : float t | List : 'a t -> 'a list t | Many : 'a t -> 'a list t | Opt : 'a t -> 'a option t | Pair : 'a t * 'b t -> ('a * 'b) t | Triple : 'a t * 'b t * 'c t -> ('a * 'b * 'c) t | Quad : 'a t * 'b t * 'c t * 'd t -> ('a * 'b * 'c * 'd) t | Quint : 'a t * 'b t * 'c t * 'd t * 'e t -> ('a * 'b * 'c * 'd * 'e) t | Guard : ('a -> bool) * 'a t -> 'a t | Map : ('a -> 'b) * ('b -> 'a) * 'b t -> 'a t | Switch : ('a -> char * 'a inject_branch) * (char -> 'a extract_branch) -> 'a t and _ inject_branch = | BranchTo : 'b t * 'b -> 'a inject_branch and _ extract_branch = | BranchFrom : 'b t * ('b -> 'a) -> 'a extract_branch type 'a bij = 'a t (** {2 Bijection description} *) let unit_ = Unit let string_ = String let int_ = Int let bool_ = Bool let float_ = Float let list_ l = List l let many l = Many l let opt t = Opt t let pair a b = Pair(a,b) let triple a b c = Triple (a,b,c) let quad a b c d = Quad (a, b, c, d) let quint a b c d e = Quint (a, b, c, d, e) let guard f t = Guard (f, t) let map ~inject ~extract b = Map (inject, extract, b) let switch ~inject ~extract = Switch (inject, extract) (** {2 Exceptions} *) exception EOF exception EncodingError of string (** Raised when decoding is impossible *) exception DecodingError of string (** Raised when decoding is impossible *) (** {2 Helpers} *) let fix f = let rec bij = lazy (f (fun () -> Lazy.force bij)) in Lazy.force bij let with_version v t = map ~inject:(fun x -> v, x) ~extract:(fun (v', x) -> if v = v' then x else raise (DecodingError ("expected version " ^ v))) (pair string_ t) let array_ m = map ~inject:(fun a -> Array.to_list a) ~extract:(fun l -> Array.of_list l) (list_ m) let hashtbl ma mb = map ~inject:(fun h -> Hashtbl.fold (fun k v l -> (k,v)::l) h []) ~extract:(fun l -> let h = Hashtbl.create 5 in List.iter (fun (k,v) -> Hashtbl.add h k v) l; h) (list_ (pair ma mb)) (** {2 Source of parsing} *) module type SOURCE = sig type t val eof : t -> bool (** End of input reached? *) val cur : t -> char (** Current char *) val junk : t -> unit (** Discard current char *) end module SourceStr = struct type t = { str : string; mutable idx : int; } let create str = { str; idx = 0; } let eof t = t.idx = String.length t.str let cur t = if eof t then raise EOF else t.str.[t.idx] let junk t = if t.idx >= String.length t.str then raise EOF else t.idx <- t.idx + 1 end module SourceStream = struct type t = char Stream.t let eof t = match Stream.peek t with | None -> true | Some _ -> false let cur t = match Stream.peek t with | None -> raise EOF | Some c -> c let junk t = Stream.junk t end module SourceChan = struct type t = { chan : in_channel; buf : string; mutable len : int; mutable idx : int; } let create ?(bufsize=256) ic = let t = { chan = ic; buf = String.make bufsize ' '; len = 0; idx = 0; } in (* fill the buffer *) t.len <- input t.chan t.buf 0 bufsize; t let eof t = t.len = 0 let cur t = if eof t then raise EOF else t.buf.[t.idx] let junk t = (if t.len = 0 then raise EOF); t.idx <- t.idx + 1; if t.idx = t.len then begin (* refill *) t.idx <- 0; t.len <- input t.chan t.buf 0 (String.length t.buf) end end (** {2 Sink: Where to print} *) module type SINK = sig type t val write : t -> string -> int -> int -> unit (* write substring [i..i+len] *) val write_char : t -> char -> unit val write_int : t -> int -> unit val write_bool : t -> bool -> unit val write_float : t -> float -> unit end module SinkBuf = struct type t = Buffer.t let write t str i len = Buffer.add_substring t str i len let write_char t c = Buffer.add_char t c let write_int t i = Printf.bprintf t "%d" i let write_bool t b = Printf.bprintf t "%B" b let write_float t f = Printf.bprintf t "%f" f end module SinkChan = struct type t = out_channel let write t str i len = output t str i len let write_char t c = output_char t c let write_int t i = Printf.fprintf t "%d" i let write_bool t b = Printf.fprintf t "%B" b let write_float t f = Printf.fprintf t "%f" f end (** {2 Encoding/decoding} *) module type ENCODE = sig type sink val encode : bij:'a t -> sink -> 'a -> unit end module type DECODE = sig type source val decode : bij:'a t -> source -> 'a end module SexpEncode(Sink : SINK) = struct type sink = Sink.t (* print escaped string to [sink] *) let escape sink s = (* function that escapes into the given sink *) let rec really_escape sink s i = if i = String.length s then () (* done *) else begin (match s.[i] with | '\n' -> Sink.write sink "\\n" 0 2 | '\t' -> Sink.write sink "\\t" 0 2 | ' ' | ')' -> Sink.write_char sink '\\'; Sink.write_char sink s.[i]; | c -> Sink.write_char sink c); really_escape sink s (i+1) end in (* search for a char to escape, if any *) let rec search s i = if i = String.length s then Sink.write sink s 0 i (* no escaping needed *) else match s.[i] with | ' ' | '\t' | '\n' | ')' -> (* must escape *) Sink.write sink s 0 i; really_escape sink s i (* escape starting at i *) | _ -> search s (i+1) in search s 0 let encode ~bij sink x = let open Sink in let rec encode : type a. a bij -> a -> unit = fun bij x -> match bij, x with | Unit, () -> () | String, s -> escape sink s | Int, i -> Sink.write_int sink i | Bool, b -> Sink.write_bool sink b | Float, f -> Sink.write_float sink f | List bij', l -> Sink.write_char sink '('; List.iteri (fun i x -> (if i > 0 then Sink.write_char sink ' '); encode bij' x) l; Sink.write_char sink ')' | Many _, [] -> failwith "Bij.encode: expected non-empty list" | Many bij', l -> Sink.write_char sink '('; List.iteri (fun i x -> (if i > 0 then Sink.write_char sink ' '); encode bij' x) l; Sink.write_char sink ')' | Opt bij, None -> encode (List bij) [] | Opt bij, Some x -> encode (List bij) [x] | Pair (bij_a, bij_b), (a, b) -> Sink.write_char sink '('; encode bij_a a; Sink.write_char sink ' '; encode bij_b b; Sink.write_char sink ')' | Guard (check, bij'), _ -> (if not (check x) then raise (EncodingError ("check failed"))); encode bij' x | Triple (bij_a, bij_b, bij_c), (a, b, c) -> Sink.write_char sink '('; encode bij_a a; Sink.write_char sink ' '; encode bij_b b; Sink.write_char sink ' '; encode bij_c c; Sink.write_char sink ')' | Quad (bij_a, bij_b, bij_c, bij_d), (a, b, c, d) -> Sink.write_char sink '('; encode bij_a a; Sink.write_char sink ' '; encode bij_b b; Sink.write_char sink ' '; encode bij_c c; Sink.write_char sink ' '; encode bij_d d; Sink.write_char sink ')' | Quint (bij_a, bij_b, bij_c, bij_d, bij_e), (a, b, c, d, e) -> Sink.write_char sink '('; encode bij_a a; Sink.write_char sink ' '; encode bij_b b; Sink.write_char sink ' '; encode bij_c c; Sink.write_char sink ' '; encode bij_d d; Sink.write_char sink ' '; encode bij_e e; Sink.write_char sink ')' | Map (inject, _, bij'), x -> let y = inject x in encode bij' y | Switch (inject, _), x -> let c, BranchTo (bij', y) = inject x in Sink.write_char sink c; encode bij' y in encode bij x end module SexpDecode(Source : SOURCE) = struct type source = Source.t let decode ~bij source = let rec cur () = Source.cur source and junk () = Source.junk source and eof () = Source.eof source in (* eat whitespace *) let rec whitespace () = if not (eof ()) then match cur () with | ' ' | '\t' | '\n' -> junk (); whitespace () | _ -> () in (* decode using the [bij] *) let rec decode : type a. a bij -> a = fun bij -> whitespace (); match bij with | Unit -> () | String -> decode_string (Buffer.create 5) | Int -> decode_int 0 | Float -> begin try float_of_string (decode_string (Buffer.create 3)) with Failure _ -> raise (DecodingError ("expected float")) end | Bool -> begin match decode_string (Buffer.create 4) with | "true" -> true | "false" -> false | s -> raise (DecodingError ("expected bool, got " ^ s)) end | List bij' -> decode_open (); let l = decode_list bij' [] in decode_close (); l | Many bij' -> decode_open (); let l = decode_list bij' [] in decode_close (); if l = [] then raise (DecodingError "expected non empty list") else l | Opt bij' -> decode_open (); let l = decode_list bij' [] in decode_close (); begin match l with | [] -> None | [x] -> Some x | _ -> raise (DecodingError "expected option") end | Pair (bija, bijb) -> decode_open (); let a = decode bija in let b = decode bijb in decode_close (); a, b | Triple (bija, bijb, bijc) -> decode_open (); let a = decode bija in let b = decode bijb in let c = decode bijc in decode_close (); a, b, c | Quad (bija, bijb, bijc, bijd) -> decode_open (); let a = decode bija in let b = decode bijb in let c = decode bijc in let d = decode bijd in decode_close (); a, b, c, d | Quint (bija, bijb, bijc, bijd, bije) -> decode_open (); let a = decode bija in let b = decode bijb in let c = decode bijc in let d = decode bijd in let e = decode bije in decode_close (); a, b, c, d, e | Guard (check, bij') -> let x = decode bij' in (if not (check x) then raise (DecodingError "check failed")); x | Map (_, extract, bij') -> let x = decode bij' in extract x | Switch (_, extract) -> let c = cur () in let BranchFrom (bij', convert) = extract c in junk (); (* remove c *) let y = decode bij' in convert y (* translate back *) and decode_open : unit -> unit = fun () -> match cur () with | '(' -> junk () (* done *) | _ -> raise (DecodingError "expected '('") and decode_close : unit -> unit = fun () -> whitespace (); (* on close, first eat whitespace *) match cur () with | ')' -> junk () (* done *) | _ -> raise (DecodingError "expected ')'") and decode_int : int -> int = fun i -> if eof () then i else match cur () with | '-' when i = 0 -> junk (); ~- (decode_int 0) (* negative *) | c when Char.code c >= Char.code '0' && Char.code c <= Char.code '9' -> junk (); decode_int (i * 10 + (Char.code c - Char.code '0')) | _ -> i and decode_string : Buffer.t -> string = fun buf -> if eof () then Buffer.contents buf else match cur() with | ' ' | '\t' | '\n' | ')' -> Buffer.contents buf | '\\' -> junk (); Buffer.add_char buf (cur ()); junk (); decode_string buf | c -> Buffer.add_char buf c; junk (); decode_string buf and decode_list : type a. a t -> a list -> a list = fun bij l -> whitespace (); match cur() with | ')' -> List.rev l (* done *) | _ -> let x = decode bij in decode_list bij (x :: l) in try decode bij with EOF -> raise (DecodingError "unexpected EOF") end module SexpStr = struct module SexpEncodeBuf = SexpEncode(SinkBuf) module SexpDecodeString = SexpDecode(SourceStr) let to_string ?(bufsize=64) ~bij x = let b = Buffer.create bufsize in SexpEncodeBuf.encode ~bij b x; Buffer.contents b let of_string ~bij s = SexpDecodeString.decode ~bij (SourceStr.create s) end module SexpChan = struct module SexpEncodeChan = SexpEncode(SinkChan) module SexpDecodeChan = SexpDecode(SourceChan) include SexpEncodeChan include SexpDecodeChan end