(* copyright (c) 2013-2014, simon cruanes all rights reserved. redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *) (** {1 Categorical Constructs} Attempt to copy some structures from Haskell and the likes. Disclaimer: I don't know much about category theory, only about type signatures ;). *) (** {2 Signatures} *) module type MONOID = sig type t val empty : t val append : t -> t -> t end module type FUNCTOR = sig type +'a t val map : ('a -> 'b) -> 'a t -> 'b t end module type APPLICATIVE = sig type +'a t include FUNCTOR with type 'a t := 'a t val pure : 'a -> 'a t val (<*>) : ('a -> 'b) t -> 'a t -> 'b t end module type MONAD_BARE = sig type +'a t val return : 'a -> 'a t val (>>=) : 'a t -> ('a -> 'b t) -> 'b t end module type MONAD = sig include MONAD_BARE include APPLICATIVE with type 'a t := 'a t end module type MONAD_TRANSFORMER = sig include MONAD module M : MONAD val lift : 'a M.t -> 'a t end (** Cheating: use an equivalent of "to List" with a sequence *) type 'a sequence = ('a -> unit) -> unit module type FOLDABLE = sig type 'a t val to_seq : 'a t -> 'a sequence end module type TRAVERSE = functor(M : MONAD) -> sig type +'a t val sequence_m : 'a M.t t -> 'a t M.t val fold_m : ('b -> 'a -> 'b M.t) -> 'b -> 'a t -> 'b M.t val map_m : ('a -> 'b M.t) -> 'a t -> 'b t M.t end (** The free monad is built by nesting applications of a functor [F]. For instance, Lisp-like nested lists can be built and dealt with like this: {[ module Lisp = CCCat.FreeMonad(CCList);; let l = Lisp.(inj [1;2;3] >>= fun x -> inj [x; x*2; x+100]);; ]} *) module type FREE_MONAD = sig module F : FUNCTOR type +'a t = | Return of 'a | Roll of 'a t F.t include MONAD with type 'a t := 'a t val inj : 'a F.t -> 'a t end (** {2 Some Implementations} *) (** Implement the applicative and functor modules from only return and bind *) module WrapMonad(M : MONAD_BARE) : MONAD with type 'a t = 'a M.t module MakeFree(F : FUNCTOR) : FREE_MONAD with module F = F module MakeFreeFold(FM : FREE_MONAD)(Fold : FOLDABLE with type 'a t = 'a FM.F.t) : FOLDABLE with type 'a t = 'a FM.t