(* This file is free software, part of containers. See file "license" for more details. *) type 'a iter = ('a -> unit) -> unit type 'a gen = unit -> 'a option type 'a equal = 'a -> 'a -> bool type 'a ord = 'a -> 'a -> int type 'a printer = Format.formatter -> 'a -> unit include Seq let nil () = Nil let cons a b () = Cons (a, b) let empty = nil let singleton x () = Cons (x, nil) let init n f = let rec aux i () = if i >= n then Nil else Cons (f i, aux (i + 1)) in aux 0 let rec _forever x () = Cons (x, _forever x) let rec _repeat n x () = if n <= 0 then Nil else Cons (x, _repeat (n - 1) x) let repeat ?n x = match n with | None -> _forever x | Some n -> _repeat n x let rec forever f () = Cons (f (), forever f) let is_empty l = match l () with | Nil -> true | Cons _ -> false let head_exn l = match l () with | Nil -> raise Not_found | Cons (x, _) -> x let head l = match l () with | Nil -> None | Cons (x, _) -> Some x let tail_exn l = match l () with | Nil -> raise Not_found | Cons (_, l) -> l let tail l = match l () with | Nil -> None | Cons (_, l) -> Some l let uncons l = match l () with | Nil -> None | Cons (h, t) -> Some (h, t) let rec equal eq l1 l2 = match l1 (), l2 () with | Nil, Nil -> true | Nil, _ | _, Nil -> false | Cons (x1, l1'), Cons (x2, l2') -> eq x1 x2 && equal eq l1' l2' let rec compare cmp l1 l2 = match l1 (), l2 () with | Nil, Nil -> 0 | Nil, _ -> -1 | _, Nil -> 1 | Cons (x1, l1'), Cons (x2, l2') -> let c = cmp x1 x2 in if c = 0 then compare cmp l1' l2' else c let rec fold f acc res = match res () with | Nil -> acc | Cons (s, cont) -> fold f (f acc s) cont let fold_left = fold let foldi f acc res = let rec aux acc i res = match res () with | Nil -> acc | Cons (s, cont) -> aux (f acc i s) (i + 1) cont in aux acc 0 res let fold_lefti = foldi let rec iter f l = match l () with | Nil -> () | Cons (x, l') -> f x; iter f l' let iteri f l = let rec aux f l i = match l () with | Nil -> () | Cons (x, l') -> f i x; aux f l' (i + 1) in aux f l 0 let length l = fold (fun acc _ -> acc + 1) 0 l let rec take n (l : 'a t) () = if n = 0 then Nil else ( match l () with | Nil -> Nil | Cons (x, l') -> Cons (x, take (n - 1) l') ) let rec take_while p l () = match l () with | Nil -> Nil | Cons (x, l') -> if p x then Cons (x, take_while p l') else Nil let rec drop n (l : 'a t) () = match l () with | l' when n = 0 -> l' | Nil -> Nil | Cons (_, l') -> drop (n - 1) l' () let rec drop_while p l () = match l () with | Nil -> Nil | Cons (x, l') when p x -> drop_while p l' () | Cons _ as res -> res let rec map f l () = match l () with | Nil -> Nil | Cons (x, l') -> Cons (f x, map f l') let mapi f l = let rec aux f l i () = match l () with | Nil -> Nil | Cons (x, tl) -> Cons (f i x, aux f tl (i + 1)) in aux f l 0 let rec fmap f (l : 'a t) () = match l () with | Nil -> Nil | Cons (x, l') -> (match f x with | None -> fmap f l' () | Some y -> Cons (y, fmap f l')) let rec filter p l () = match l () with | Nil -> Nil | Cons (x, l') -> if p x then Cons (x, filter p l') else filter p l' () let rec append l1 l2 () = match l1 () with | Nil -> l2 () | Cons (x, l1') -> Cons (x, append l1' l2) let rec cycle l () = append l (cycle l) () let rec iterate f a () = Cons (a, iterate f (f a)) let rec unfold f acc () = match f acc with | None -> Nil | Some (x, acc') -> Cons (x, unfold f acc') let rec for_all p l = match l () with | Nil -> true | Cons (x, tl) -> p x && for_all p tl let rec exists p l = match l () with | Nil -> false | Cons (x, tl) -> p x || exists p tl let rec find p l = match l () with | Nil -> None | Cons (x, tl) -> if p x then Some x else find p tl let rec find_map f l = match l () with | Nil -> None | Cons (x, tl) -> (match f x with | None -> find_map f tl | e -> e) let rec scan f acc res () = Cons ( acc, fun () -> match res () with | Nil -> Nil | Cons (s, cont) -> scan f (f acc s) cont () ) let rec flat_map f l () = match l () with | Nil -> Nil | Cons (x, l') -> _flat_map_app f (f x) l' () and _flat_map_app f l l' () = match l () with | Nil -> flat_map f l' () | Cons (x, tl) -> Cons (x, _flat_map_app f tl l') let concat_map = flat_map let product_with f l1 l2 = let rec _next_left h1 tl1 h2 tl2 () = match tl1 () with | Nil -> _next_right ~die:true h1 tl1 h2 tl2 () | Cons (x, tl1') -> _map_list_left x h2 (_next_right ~die:false (x :: h1) tl1' h2 tl2) () and _next_right ~die h1 tl1 h2 tl2 () = match tl2 () with | Nil when die -> Nil | Nil -> _next_left h1 tl1 h2 tl2 () | Cons (y, tl2') -> _map_list_right h1 y (_next_left h1 tl1 (y :: h2) tl2') () and _map_list_left x l kont () = match l with | [] -> kont () | y :: l' -> Cons (f x y, _map_list_left x l' kont) and _map_list_right l y kont () = match l with | [] -> kont () | x :: l' -> Cons (f x y, _map_list_right l' y kont) in _next_left [] l1 [] l2 let map_product = product_with let product l1 l2 = product_with (fun x y -> x, y) l1 l2 let rec group eq l () = match l () with | Nil -> Nil | Cons (x, l') -> Cons (cons x (take_while (eq x) l'), group eq (drop_while (eq x) l')) let rec _uniq eq prev l () = match prev, l () with | _, Nil -> Nil | None, Cons (x, l') -> Cons (x, _uniq eq (Some x) l') | Some y, Cons (x, l') -> if eq x y then _uniq eq prev l' () else Cons (x, _uniq eq (Some x) l') let uniq eq l = _uniq eq None l let rec filter_map f l () = match l () with | Nil -> Nil | Cons (x, l') -> (match f x with | None -> filter_map f l' () | Some y -> Cons (y, filter_map f l')) let flatten l = flat_map (fun x -> x) l let concat = flatten let range i j = let rec aux i j () = if i = j then Cons (i, nil) else if i < j then Cons (i, aux (i + 1) j) else Cons (i, aux (i - 1) j) in aux i j let ( -- ) = range let ( --^ ) i j = if i = j then empty else if i < j then range i (j - 1) else range i (j + 1) let rec fold2 f acc l1 l2 = match l1 (), l2 () with | Nil, _ | _, Nil -> acc | Cons (x1, l1'), Cons (x2, l2') -> fold2 f (f acc x1 x2) l1' l2' let fold_left2 = fold2 let rec map2 f l1 l2 () = match l1 (), l2 () with | Nil, _ | _, Nil -> Nil | Cons (x1, l1'), Cons (x2, l2') -> Cons (f x1 x2, map2 f l1' l2') let rec iter2 f l1 l2 = match l1 (), l2 () with | Nil, _ | _, Nil -> () | Cons (x1, l1'), Cons (x2, l2') -> f x1 x2; iter2 f l1' l2' let rec for_all2 f l1 l2 = match l1 (), l2 () with | Nil, _ | _, Nil -> true | Cons (x1, l1'), Cons (x2, l2') -> f x1 x2 && for_all2 f l1' l2' let rec exists2 f l1 l2 = match l1 (), l2 () with | Nil, _ | _, Nil -> false | Cons (x1, l1'), Cons (x2, l2') -> f x1 x2 || exists2 f l1' l2' let rec merge cmp l1 l2 () = match l1 (), l2 () with | Nil, tl2 -> tl2 | tl1, Nil -> tl1 | Cons (x1, l1'), Cons (x2, l2') -> if cmp x1 x2 < 0 then Cons (x1, merge cmp l1' l2) else Cons (x2, merge cmp l1 l2') let sorted_merge = merge let rec zip a b () = match a (), b () with | Nil, _ | _, Nil -> Nil | Cons (x, a'), Cons (y, b') -> Cons ((x, y), zip a' b') let unzip l = let rec first l () = match l () with | Nil -> Nil | Cons ((x, _), tl) -> Cons (x, first tl) and second l () = match l () with | Nil -> Nil | Cons ((_, y), tl) -> Cons (y, second tl) in first l, second l let split = unzip let zip_i seq = let rec loop i seq () = match seq () with | Nil -> Nil | Cons (x, tl) -> Cons ((i, x), loop (i + 1) tl) in loop 0 seq (** {2 Implementations} *) let return x () = Cons (x, nil) let pure = return let ( >>= ) xs f = flat_map f xs let ( >|= ) xs f = map f xs let ( <*> ) fs xs = product_with (fun f x -> f x) fs xs (** {2 Conversions} *) let rec _to_rev_list acc l = match l () with | Nil -> acc | Cons (x, l') -> _to_rev_list (x :: acc) l' let to_rev_list l = _to_rev_list [] l let to_list l = let rec direct i (l : 'a t) = match l () with | Nil -> [] | _ when i = 0 -> List.rev (_to_rev_list [] l) | Cons (x, f) -> x :: direct (i - 1) f in direct 200 l let of_list l = let rec aux l () = match l with | [] -> Nil | x :: l' -> Cons (x, aux l') in aux l let of_array a = let rec aux a i () = if i = Array.length a then Nil else Cons (a.(i), aux a (i + 1)) in aux a 0 let of_string s = let rec aux s i () = if i = String.length s then Nil else Cons (String.get s i, aux s (i + 1)) in aux s 0 let to_array l = (* We contruct the length and list of seq elements (in reverse) in one pass *) let len = ref 0 in let ls = fold_left (fun acc x -> incr len; x :: acc) [] l in (* The length is used to initialize the array, and then to derive the index for each item, working back from the last. This lets us only traverse the list twice, instead of having to reverse it. *) match ls with | [] -> [||] | init :: rest -> let a = Array.make !len init in (* Subtract 1 for len->index conversion and 1 for the removed [init] *) let idx = !len - 2 in ignore (List.fold_left (fun i x -> a.(i) <- x; i - 1) idx rest : int); a let rec to_iter res k = match res () with | Nil -> () | Cons (s, f) -> k s; to_iter f k let to_gen l = let l = ref l in fun () -> match !l () with | Nil -> None | Cons (x, l') -> l := l'; Some x type 'a of_gen_state = | Of_gen_thunk of 'a gen | Of_gen_saved of 'a node let of_gen g = let rec consume r () = match !r with | Of_gen_saved cons -> cons | Of_gen_thunk g -> (match g () with | None -> r := Of_gen_saved Nil; Nil | Some x -> let tl = consume (ref (Of_gen_thunk g)) in let l = Cons (x, tl) in r := Of_gen_saved l; l) in consume (ref (Of_gen_thunk g)) let sort ~cmp l = let l = to_list l in of_list (List.sort cmp l) let sort_uniq ~cmp l = let l = to_list l in uniq (fun x y -> cmp x y = 0) (of_list (List.sort cmp l)) type 'a memoize = | MemoThunk | MemoSave of 'a node let rec memoize f = let r = ref MemoThunk in fun () -> match !r with | MemoSave l -> l | MemoThunk -> let l = match f () with | Nil -> Nil | Cons (x, tail) -> Cons (x, memoize tail) in r := MemoSave l; l (** {2 Fair Combinations} *) let rec interleave a b () = match a () with | Nil -> b () | Cons (x, tail) -> Cons (x, interleave b tail) let rec fair_flat_map f a () = match a () with | Nil -> Nil | Cons (x, tail) -> let y = f x in interleave y (fair_flat_map f tail) () let rec fair_app f a () = match f () with | Nil -> Nil | Cons (f1, fs) -> interleave (map f1 a) (fair_app fs a) () let ( >>- ) a f = fair_flat_map f a let ( <.> ) f a = fair_app f a (** {2 Infix} *) module Infix = struct let ( >>= ) = ( >>= ) let ( >|= ) = ( >|= ) let ( <*> ) = ( <*> ) let ( >>- ) = ( >>- ) let ( <.> ) = ( <.> ) let ( -- ) = ( -- ) let ( --^ ) = ( --^ ) end (** {2 Monadic Operations} *) module type MONAD = sig type 'a t val return : 'a -> 'a t val ( >>= ) : 'a t -> ('a -> 'b t) -> 'b t end module Traverse (M : MONAD) = struct open M let map_m f l = let rec aux acc l = match l () with | Nil -> return (of_list (List.rev acc)) | Cons (x, l') -> f x >>= fun x' -> aux (x' :: acc) l' in aux [] l let sequence_m l = map_m (fun x -> x) l let rec fold_m f acc l = match l () with | Nil -> return acc | Cons (x, l') -> f acc x >>= fun acc' -> fold_m f acc' l' end (** {2 IO} *) let pp ?(pp_start = fun _ () -> ()) ?(pp_stop = fun _ () -> ()) ?(pp_sep = fun out () -> Format.fprintf out ",@ ") pp_item fmt l = pp_start fmt (); let rec pp fmt l = match l () with | Nil -> () | Cons (x, l') -> pp_sep fmt (); Format.pp_print_cut fmt (); pp_item fmt x; pp fmt l' in (match l () with | Nil -> () | Cons (x, l') -> pp_item fmt x; pp fmt l'); pp_stop fmt ()