(** Generic benchs *) module B = Benchmark let (@>) = B.Tree.(@>) let (@>>) = B.Tree.(@>>) let (@>>>) = B.Tree.(@>>>) let (|>) = CCFun.(|>) module Int_map = Map.Make(CCInt) let app_int f n = string_of_int n @> lazy (f n) let app_ints f l = B.Tree.concat (List.map (app_int f) l) (* for benchmark *) let repeat = 3 (* composition *) let (%%) f g x = f (g x) module L = struct (* MAP *) let f_ x = x+1 let rec map_naive f l = match l with | [] -> [] | x :: tail -> let y = f x in y :: map_naive f tail let bench_map ?(time=2) n = let l = CCList.(1 -- n) in let ral = CCRAL.of_list l in let map_naive () = ignore (try List.map f_ l with Stack_overflow -> []) and map_naive2 () = ignore (try map_naive f_ l with Stack_overflow -> []) and map_tailrec () = ignore (List.rev (List.rev_map f_ l)) and ccmap () = ignore (CCList.map f_ l) and ralmap () = ignore (CCRAL.map ~f:f_ ral) in B.throughputN time ~repeat [ "List.map", map_naive, () ; "List.map(inline)", map_naive2, () ; "List.rev_map o rev", map_tailrec, () ; "CCList.map", ccmap, () ; "CCRAL.map", ralmap, () ] (* FLAT MAP *) let f_ x = if x mod 10 = 0 then [] else if x mod 5 = 1 then [x;x+1] else [x;x+1;x+2;x+3] let f_ral_ x = if x mod 10 = 0 then CCRAL.empty else if x mod 5 = 1 then CCRAL.of_list [x;x+1] else CCRAL.of_list [x;x+1;x+2;x+3] let bench_flat_map ?(time=2) n = let l = CCList.(1 -- n) in let ral = CCRAL.of_list l in let flatten_map_ l () = ignore @@ List.flatten (CCList.map f_ l) and flatmap l () = ignore @@ CCList.flat_map f_ l and flatten_ccmap_ l () = ignore @@ List.flatten (List.map f_ l) and flatmap_ral_ l () = ignore @@ CCRAL.flat_map f_ral_ l in B.throughputN time ~repeat [ "flat_map", flatmap l, () ; "flatten o CCList.map", flatten_ccmap_ l, () ; "flatten o map", flatten_map_ l, () ; "ral_flatmap", flatmap_ral_ ral, () ] (* APPEND *) let append_ f (l1, l2, l3) = ignore (f (f l1 l2) l3) let bench_append ?(time=2) n = let l1 = CCList.(1 -- n) in let l2 = CCList.(n+1 -- 2*n) in let l3 = CCList.(2*n+1 -- 3*n) in let arg = l1, l2, l3 in B.throughputN time ~repeat [ "CCList.append", append_ CCList.append, arg ; "List.append", append_ List.append, arg ] (* FLATTEN *) let bench_flatten ?(time=2) n = let fold_right_append_ l = List.fold_right List.append l [] and cc_fold_right_append_ l = CCList.fold_right CCList.append l [] in let l = CCList.mapi (fun i x -> CCList.(x -- (x+ min i 100))) CCList.(1 -- n) in B.throughputN time ~repeat [ "CCList.flatten", CCList.flatten, l ; "List.flatten", List.flatten, l ; "fold_right append", fold_right_append_, l ; "CCList.(fold_right append)", cc_fold_right_append_, l ] (* RANDOM ACCESS *) let bench_nth ?(time=2) n = let l = CCList.(0 -- (n - 1)) in let ral = CCRAL.of_list l in let v = CCFun_vec.of_list l in let bv = BatVect.of_list l in let cv = Clarity.Vector.of_list l in let map = List.fold_left (fun map i -> Int_map.add i i map) Int_map.empty l in let bench_list l () = for i = 0 to n-1 do Sys.opaque_identity (ignore (List.nth l i)) done and bench_map l () = for i = 0 to n-1 do Sys.opaque_identity (ignore (Int_map.find i l)) done and bench_ral l () = for i = 0 to n-1 do Sys.opaque_identity (ignore (CCRAL.get_exn l i)) done and bench_funvec l () = for i = 0 to n-1 do Sys.opaque_identity (ignore (CCFun_vec.get_exn i l)) done and bench_batvec l () = for i = 0 to n-1 do Sys.opaque_identity (ignore (BatVect.get l i)) done and bench_clarity_vec l () = for i = 0 to n-1 do Sys.opaque_identity (ignore (Clarity.Vector.get l i)) done in B.throughputN time ~repeat [ "List.nth", bench_list l, () ; "Map.find", bench_map map, () ; "RAL.get", bench_ral ral, () ; "funvec.get", bench_funvec v, () ; "batvec.get", bench_batvec bv, () ; "clarity_vec.get", bench_clarity_vec cv, () ] let bench_set ?(time=2) n = let l = CCList.(0 -- (n - 1)) in let ral = CCRAL.of_list l in let v = CCFun_vec.of_list l in let bv = BatVect.of_list l in let cv = Clarity.Vector.of_list l in let map = List.fold_left (fun map i -> Int_map.add i i map) Int_map.empty l in let bench_map l () = for i = 0 to n-1 do Sys.opaque_identity (ignore (Int_map.add i (-i) l)) done and bench_ral l () = for i = 0 to n-1 do Sys.opaque_identity (ignore (CCRAL.set l i (-i))) done and bench_funvec l () = for i = 0 to n-1 do Sys.opaque_identity (ignore ((* TODO *))) done and bench_batvec l () = for i = 0 to n-1 do Sys.opaque_identity (ignore (BatVect.set l i (-i))) done and bench_clarity_vec l () = for i = 0 to n-1 do Sys.opaque_identity (ignore (Clarity.Vector.update l i (-1))) done in B.throughputN time ~repeat [ "Map.add", bench_map map, () ; "RAL.set", bench_ral ral, () (* ; "funvec.set", bench_funvec v, () *) ; "batvec.set", bench_batvec bv, () ; "clarity_vec.update", bench_clarity_vec cv, () ] let bench_push ?(time=2) n = let l = CCList.(0 -- (n - 1)) in let ral = CCRAL.of_list l in let v = CCFun_vec.of_list l in let bv = BatVect.of_list l in let cv = Clarity.Vector.of_list l in let map = List.fold_left (fun map i -> Int_map.add i i map) Int_map.empty l in let bench_map l () = for i = 0 to n-1 do Sys.opaque_identity (ignore (Int_map.add i i l)) done and bench_ral l () = (* Note: Better implementation probably possible *) for i = 0 to n-1 do Sys.opaque_identity (ignore (CCRAL.append l (CCRAL.return i))) done and bench_funvec l () = for i = 0 to n-1 do Sys.opaque_identity (ignore (CCFun_vec.push i l)) done and bench_batvec l () = for i = 0 to n-1 do Sys.opaque_identity (ignore (BatVect.append i l)) done and bench_clarity_vec l () = (* Note: Better implementation probably possible *) for i = 0 to n-1 do Sys.opaque_identity (ignore (Clarity.Vector.append l (Clarity.Vector.pure i))) done in B.throughputN time ~repeat [ "Map.add", bench_map map, () (* ; "RAL.append", bench_ral ral, () *) (* too slow *) ; "funvec.push", bench_funvec v, () ; "batvec.append", bench_batvec bv, () ; "clarity_vec.append", bench_clarity_vec cv, () ] (* MAIN *) let () = B.Tree.register ( "list" @>>> [ "map" @>> B.Tree.concat [ app_int (bench_map ~time:2) 100 ; app_int (bench_map ~time:2) 10_000 ; app_int (bench_map ~time:4) 100_000 ; app_int (bench_map ~time:4) 500_000 ] ; "flat_map" @>> B.Tree.concat [ app_int (bench_flat_map ~time:2) 100 ; app_int (bench_flat_map ~time:2) 10_000 ; app_int (bench_flat_map ~time:4) 100_000] ; "flatten" @>> B.Tree.concat [ app_int (bench_flatten ~time:2) 100 ; app_int (bench_flatten ~time:2) 10_000 ; app_int (bench_flatten ~time:4) 100_000] ; "append" @>> B.Tree.concat [ app_int (bench_append ~time:2) 100 ; app_int (bench_append ~time:2) 10_000 ; app_int (bench_append ~time:4) 100_000] ; "nth" @>> B.Tree.concat [ app_int (bench_nth ~time:2) 100 ; app_int (bench_nth ~time:2) 10_000 ; app_int (bench_nth ~time:4) 100_000] ; "set" @>> B.Tree.concat [ app_int (bench_set ~time:2) 100 ; app_int (bench_set ~time:2) 10_000 ; app_int (bench_set ~time:4) 100_000] ; "push" @>> B.Tree.concat [ app_int (bench_push ~time:2) 100 ; app_int (bench_push ~time:2) 10_000 ; app_int (bench_push ~time:4) 100_000] ] ) end module Arr = struct let rand = Random.State.make [| 1;2;3;4 |] let mk_arr n = Array.init n (fun _ -> Random.State.int rand 5_000) module IntArr = struct type elt=int type t = int array let get = Array.get let set = Array.set let length = Array.length end let sort_ccarray a = CCArray.sort_generic (module IntArr) ~cmp:CCInt.compare a module Quicksort_ref = struct module A = Array module Rand = Random.State let seed_ = [|123456|] type state = { mutable l: int; (* left pointer *) mutable g: int; (* right pointer *) mutable k: int; } let rand_idx_ rand i j = i + Rand.int rand (j-i) let swap_ a i j = if i=j then () else ( let tmp = A.get a i in A.set a i (A.get a j); A.set a j tmp ) (* limit: under which we switch to insertion *) let sort ~limit ~cmp a = let rec insert_ a i k = if k 0 then ( swap_ a k (k+1); insert_ a i (k-1) ) in (* recursive part of insertion sort *) let rec sort_insertion_rec a i j k = if k 1 then sort_insertion_rec a i j (i+1) in let rand = Rand.make seed_ in (* sort slice. There is a chance that the two pivots are equal, but it's unlikely. *) let rec sort_slice_ ~st a i j = if j-i>limit then ( st.l <- i; st.g <- j-1; st.k <- i; (* choose pivots *) let p = A.get a (rand_idx_ rand i j) in let q = A.get a (rand_idx_ rand i j) in (* invariant: st.p <= st.q, swap them otherwise *) let p, q = if cmp p q > 0 then q, p else p, q in while st.k <= st.g do let cur = A.get a st.k in if cmp cur p < 0 then ( (* insert in leftmost band *) if st.k <> st.l then swap_ a st.k st.l; st.l <- st.l + 1 ) else if cmp cur q > 0 then ( (* insert in rightmost band *) while st.k < st.g && cmp (A.get a st.g) q > 0 do st.g <- st.g - 1 done; swap_ a st.k st.g; st.g <- st.g - 1; (* the element swapped from the right might be in the first situation. that is, < p (we know it's <= q already) *) if cmp (A.get a st.k) p < 0 then ( if st.k <> st.l then swap_ a st.k st.l; st.l <- st.l + 1 ) ); st.k <- st.k + 1 done; (* save values before recursing *) let l = st.l and g = st.g and sort_middle = cmp p q < 0 in sort_slice_ ~st a i l; if sort_middle then sort_slice_ ~st a l (g+1); sort_slice_ ~st a (g+1) j; ) else sort_insertion a i j in if A.length a > 0 then ( let st = { l=0; g=A.length a; k=0; } in sort_slice_ ~st a 0 (A.length a) ) end let quicksort ~limit a = Quicksort_ref.sort ~limit ~cmp:CCInt.compare a let sort_std a = Array.sort CCInt.compare a (* helper, to apply a sort function over a list of arrays *) let app_list sort l = List.iter (fun a -> let a = Array.copy a in sort a ) l let () = List.iter (fun n -> let a1 = mk_arr n in let a2 = Array.copy a1 in sort_std a1; quicksort ~limit:10 a2; assert (CCArray.equal CCInt.equal a1 a2)) [ 10; 100; 1000] let bench_sort ?(time=2) n = let a1 = mk_arr n in let a2 = mk_arr n in let a3 = mk_arr n in B.throughputN time ~repeat [ "std", app_list sort_std, [a1;a2;a3] ; "ccarray.sort_gen", app_list sort_ccarray, [a1;a2;a3] ; "ccarray.quicksort(limit=5)", app_list (quicksort ~limit:5), [a1;a2;a3] ; "ccarray.quicksort(limit=10)", app_list (quicksort ~limit:10), [a1;a2;a3] ; "ccarray.quicksort(limit=20)", app_list (quicksort ~limit:20), [a1;a2;a3] ] let () = B.Tree.register ("array" @>>> [ "sort" @>> app_ints (bench_sort ?time:None) [50; 100; 1000; 10_000; 50_000; 100_000; 500_000] ] ) end module Vec = struct let f x = x+1 let map_push_ f v = let v' = CCVector.create () in CCVector.iter (fun x -> CCVector.push v' (f x)) v; v' let map_push_size_ f v = let v' = CCVector.create_with ~capacity:(CCVector.length v) 0 in CCVector.iter (fun x -> CCVector.push v' (f x)) v; v' let bench_map n = let v = CCVector.init n (fun x->x) in B.throughputN 2 ~repeat [ "map", CCVector.map f, v ; "map_push", map_push_ f, v ; "map_push_cap", map_push_size_ f, v ] let try_append_ app n v2 () = let v1 = CCVector.init n (fun x->x) in app v1 v2; assert (CCVector.length v1 = 2*n); () let append_naive_ v1 v2 = CCVector.iter (fun x -> CCVector.push v1 x) v2 let bench_append n = let v2 = CCVector.init n (fun x->n+x) in B.throughputN 2 ~repeat [ "append", try_append_ CCVector.append n v2, () ; "append_naive", try_append_ append_naive_ n v2, () ] let () = B.Tree.register ( "vector" @>>> [ "map" @>> app_ints bench_map [100; 10_000; 100_000] ; "append" @>> app_ints bench_append [100; 10_000; 50_000] ] ) end module Cache = struct module C = CCCache let make_fib c = let f = C.with_cache_rec c (fun fib n -> match n with | 0 -> 0 | 1 -> 1 | 2 -> 1 | n -> fib (n-1) + fib (n-2) ) in fun x -> C.clear c; f x let bench_fib n = let l = [ "replacing_fib (128)", make_fib (C.replacing ~eq:CCInt.equal 128), n ; "LRU_fib (128)", make_fib (C.lru ~eq:CCInt.equal 128), n ; "replacing_fib (16)", make_fib (C.replacing ~eq:CCInt.equal 16), n ; "LRU_fib (16)", make_fib (C.lru ~eq:CCInt.equal 16), n ; "unbounded", make_fib (C.unbounded ~eq:CCInt.equal 32), n ] in let l = if n <= 20 then [ "linear_fib (5)", make_fib (C.linear ~eq:CCInt.equal 5), n ; "linear_fib (32)", make_fib (C.linear ~eq:CCInt.equal 32), n ; "dummy_fib", make_fib C.dummy, n ] @ l else l in B.throughputN 3 l ~repeat let () = B.Tree.register ( "cache" @>>> [ "fib" @>> app_ints bench_fib [10; 20; 100; 200; 1_000;] ] ) end module Tbl = struct (** Signature for mutable map *) module type MUT = sig type key type 'a t val name : string val find : 'a t -> key -> 'a val create : int -> 'a t val add : 'a t -> key -> 'a -> unit val replace : 'a t -> key -> 'a -> unit end module type INT_MUT = MUT with type key = int module type STRING_MUT = MUT with type key = string module type IMMUT = sig type key type 'a t val name : string val empty : 'a t val find : key -> 'a t -> 'a val add : key -> 'a -> 'a t -> 'a t end module type INT_IMMUT = IMMUT with type key = int module MUT_OF_IMMUT(T : IMMUT) : MUT with type key = T.key and type 'a t = 'a T.t ref = struct type key = T.key type 'a t = 'a T.t ref let name = T.name let create _ = ref T.empty let find m k = T.find k !m let add m k v = m := T.add k v !m let replace = add end module type KEY = sig type t val equal : t -> t -> bool val hash : t -> int val compare : t -> t -> int end type _ key_type = | Int : int key_type | Str : string key_type let arg_make : type a. a key_type -> (module KEY with type t = a) * string = function | Int -> (module CCInt), "int" | Str -> (module CCString : KEY with type t = string), "string" let sprintf = Printf.sprintf let hashtbl_make : type a. a key_type -> (module MUT with type key = a) = fun key -> let (module Key), name = arg_make key in let module T = struct let name = sprintf "hashtbl(%s)" name include Hashtbl.Make(Key) end in (module T) let persistent_hashtbl_ref : type a. a key_type -> (module MUT with type key = a) = fun key -> let (module Key), name = arg_make key in let module T = Ref_impl.PersistentHashtbl(Key) in let module U = struct type key = a type 'a t = 'a T.t ref let name = sprintf "persistent_tbl_old(%s)" name let create _ = ref (T.empty ()) let find m k = T.find !m k let add m k v = m := T.replace !m k v let replace = add end in (module U) let persistent_hashtbl : type a. a key_type -> (module MUT with type key = a) = fun key -> let (module Key), name = arg_make key in let module T = CCPersistentHashtbl.Make(Key) in let module U = struct type key = a type 'a t = 'a T.t ref let name = sprintf "persistent_tbl(%s)" name let create _ = ref (T.empty ()) let find m k = T.find !m k let add m k v = m := T.replace !m k v let replace = add end in (module U) let hashtbl = let module T = struct type key = int type 'a t = (int, 'a) Hashtbl.t let name = "hashtbl" let create i = Hashtbl.create i let find = Hashtbl.find let add = Hashtbl.add let replace = Hashtbl.replace end in (module T : INT_MUT) let map : type a. a key_type -> (module MUT with type key = a) = fun k -> let (module K), name = arg_make k in let module T = struct let name = sprintf "map(%s)" name include Map.Make(K) end in let module U = MUT_OF_IMMUT(T) in (module U : MUT with type key = a) let wbt : type a. a key_type -> (module MUT with type key = a) = fun k -> let (module K), name = arg_make k in let module T = struct let name = sprintf "ccwbt(%s)" name include CCWBTree.Make(K) let find = get_exn end in let module U = MUT_OF_IMMUT(T) in (module U : MUT with type key = a) let trie : (module MUT with type key = string) = let module T = struct let name = "trie(string)" include CCTrie.String let find = find_exn end in let module U = MUT_OF_IMMUT(T) in (module U) let hashtrie : type a. a key_type -> (module MUT with type key = a) = fun k -> let (module K), name = arg_make k in let module T = struct let name = sprintf "cchashtrie(%s)" name include CCHashTrie.Make(K) let find = get_exn end in let module U = MUT_OF_IMMUT(T) in (module U) let hashtrie_mut : type a. a key_type -> (module MUT with type key = a) = fun k -> let (module K), name = arg_make k in let module T = struct let name = sprintf "cchashtrie_mut(%s)" name type key = K.t module M = CCHashTrie.Make(K) type 'a t = { id: CCHashTrie.Transient.t; mutable map: 'a M.t; } let create _ = { id=CCHashTrie.Transient.create(); map=M.empty} let find m k = M.get_exn k m.map let add m k v = m.map <- M.add_mut ~id:m.id k v m.map let replace = add end in (module T) (* let hamt : type a. a key_type -> (module MUT with type key = a) = fun k -> let (module K), name = arg_make k in let module T = struct let name = sprintf "hamt(%s)" name include Hamt.Make(Hamt.StdConfig)(K) let find = find_exn end in let module U = MUT_OF_IMMUT(T) in (module U) *) let modules_int = [ hashtbl_make Int ; hashtbl ; persistent_hashtbl Int (* ; poly_hashtbl *) ; map Int ; wbt Int ; hashtrie Int ; hashtrie_mut Int (* ; hamt Int *) ] let modules_string = [ hashtbl_make Str ; map Str ; wbt Str ; hashtrie Str ; persistent_hashtbl Str (* ; hamt Str *) ; trie ] let bench_add_to which n = let make (module T : INT_MUT) = let run() = let t = T.create 50 in for i = n downto 0 do T.add t i i; done in T.name, run, () in B.throughputN 3 ~repeat (List.map make which) let bench_add = bench_add_to modules_int let bench_add_string_to l n = let keys = CCList.( 1 -- n |> map (fun i->string_of_int i,i)) in let make (module T : STRING_MUT) = let run() = let t = T.create 50 in List.iter (fun (k,v) -> T.add t k v) keys in T.name, run, () in B.throughputN 3 ~repeat (List.map make l) let bench_add_string = bench_add_string_to modules_string let bench_replace n = let make (module T : INT_MUT) = let run() = let t = T.create 50 in for i = 0 to n do T.replace t i i; done; for i = n downto 0 do T.replace t i i; done; () in T.name, run, () in B.throughputN 3 ~repeat (List.map make modules_int) module type INT_FIND = sig type 'a t val name : string val init : int -> (int -> 'a) -> 'a t val find : 'a t -> int -> 'a end let find_of_mut (module T : INT_MUT) : (module INT_FIND) = let module U = struct include T let init n f = let t = T.create n in for i=0 to n-1 do T.add t i (f i) done; t end in (module U) let array = let module T = struct type 'a t = 'a array let name = "array" let init = Array.init let find a i = a.(i) end in (module T : INT_FIND) let persistent_array = let module A = CCPersistentArray in let module T = struct type 'a t = 'a A.t let name = "persistent_array" let init = A.init let find = A.get end in (module T : INT_FIND) let modules_int_find = [ array ; persistent_array ] @ List.map find_of_mut modules_int let bench_find_to which n = let make (module T : INT_FIND) = let m = T.init n (fun i -> i) in let run() = for i = 0 to n-1 do ignore (T.find m i) done in T.name, run, () in Benchmark.throughputN 3 ~repeat (List.map make which) let bench_find = bench_find_to modules_int_find let bench_find_string_to l n = let keys = CCList.( 1 -- n |> map (fun i->string_of_int i,i)) in let make (module T : STRING_MUT) = let m = T.create n in List.iter (fun (k,v) -> T.add m k v) keys; let run() = List.iter (fun (k,_) -> ignore (T.find m k)) keys in T.name, run, () in Benchmark.throughputN 3 ~repeat (List.map make l) let bench_find_string = bench_find_string_to modules_string let () = B.Tree.register ("tbl" @>>> [ "add_int" @>> app_ints bench_add [10; 100; 1_000; 10_000;] ; "add_string" @>> app_ints bench_add_string [10; 100; 1_000; 10_000;] ; "replace" @>> app_ints bench_replace [10; 100; 1_000; 10_000] ; "find" @>> app_ints bench_find [10; 20; 100; 1_000; 10_000] ; "find_string" @>> app_ints bench_find_string [10; 20; 100; 1_000; 10_000] ]); B.Tree.register ("tbl_persistent" @>>> (* we also compare to the regular Hashtbl, as a frame of reference *) let l_int = [persistent_hashtbl Int; persistent_hashtbl_ref Int; hashtbl_make Int ] in let l_str = [persistent_hashtbl Str; persistent_hashtbl_ref Str; hashtbl_make Str ] in [ "add_int" @>> app_ints (bench_add_to l_int) [10; 100; 1_000; 10_000;] ; "find_int" @>> app_ints (bench_find_to (List.map find_of_mut l_int)) [10; 20; 100; 1_000; 10_000] ; "add_string" @>> app_ints (bench_add_string_to l_str) [10; 100; 1_000; 10_000;] ; "find_string" @>> app_ints (bench_find_string_to l_str) [10; 20; 100; 1_000; 10_000] ]); () end module Iter = struct (** {2 Sequence/Gen} *) let bench_fold n = let seq () = Sequence.fold (+) 0 Sequence.(0 --n) in let gen () = Gen.fold (+) 0 Gen.(0 -- n) in let klist () = CCKList.fold (+) 0 CCKList.(0 -- n) in B.throughputN 3 ~repeat [ "sequence.fold", seq, (); "gen.fold", gen, (); "klist.fold", klist, (); ] let bench_flat_map n = let seq () = Sequence.( 0 -- n |> flat_map (fun x -> x-- (x+10)) |> fold (+) 0 ) and gen () = Gen.( 0 -- n |> flat_map (fun x -> x-- (x+10)) |> fold (+) 0 ) and klist () = CCKList.( 0 -- n |> flat_map (fun x -> x-- (x+10)) |> fold (+) 0 ) in B.throughputN 3 ~repeat [ "sequence.flat_map", seq, (); "gen.flat_map", gen, (); "klist.flat_map", klist, (); ] let bench_iter n = let seq () = let i = ref 2 in Sequence.( 1 -- n |> iter (fun x -> i := !i * x) ) and gen () = let i = ref 2 in Gen.( 1 -- n |> iter (fun x -> i := !i * x) ) and klist () = let i = ref 2 in CCKList.( 1 -- n |> iter (fun x -> i := !i * x) ) in B.throughputN 3 ~repeat [ "sequence.iter", seq, (); "gen.iter", gen, (); "klist.iter", klist, (); ] let () = B.Tree.register ( "iter" @>>> [ "fold" @>> app_ints bench_fold [100; 1_000; 10_000; 1_000_000] ; "flat_map" @>> app_ints bench_flat_map [1_000; 10_000] ; "iter" @>> app_ints bench_iter [1_000; 10_000] ]) end module Deque = struct module type DEQUE = sig type 'a t val create : unit -> 'a t val of_seq : 'a Sequence.t -> 'a t val iter : ('a -> unit) -> 'a t -> unit val push_front : 'a t -> 'a -> unit val push_back : 'a t -> 'a -> unit val is_empty : 'a t -> bool val take_front : 'a t -> 'a val take_back : 'a t -> 'a val append_back : into:'a t -> 'a t -> unit val length : _ t -> int end module Base : DEQUE = struct type 'a elt = { content : 'a; mutable prev : 'a elt; mutable next : 'a elt; } (** A cell holding a single element *) and 'a t = 'a elt option ref (** The deque, a double linked list of cells *) exception Empty let create () = ref None let is_empty d = match !d with | None -> true | Some _ -> false let push_front d x = match !d with | None -> let rec elt = { content = x; prev = elt; next = elt; } in d := Some elt | Some first -> let elt = { content = x; prev = first.prev; next=first; } in first.prev.next <- elt; first.prev <- elt; d := Some elt let push_back d x = match !d with | None -> let rec elt = { content = x; prev = elt; next = elt; } in d := Some elt | Some first -> let elt = { content = x; next=first; prev=first.prev; } in first.prev.next <- elt; first.prev <- elt let take_back d = match !d with | None -> raise Empty | Some first when Pervasives.(==) first first.prev -> (* only one element *) d := None; first.content | Some first -> let elt = first.prev in elt.prev.next <- first; first.prev <- elt.prev; (* remove [first.prev] from list *) elt.content let take_front d = match !d with | None -> raise Empty | Some first when Pervasives.(==) first first.prev -> (* only one element *) d := None; first.content | Some first -> first.prev.next <- first.next; (* remove [first] from list *) first.next.prev <- first.prev; d := Some first.next; first.content let iter f d = match !d with | None -> () | Some first -> let rec iter elt = f elt.content; if elt.next != first then iter elt.next in iter first let of_seq seq = let q =create () in seq (push_back q); q let append_back ~into q = iter (push_back into) q let length q = let n = ref 0 in iter (fun _ -> incr n) q; !n end module FQueue : DEQUE = struct type 'a t = 'a CCFQueue.t ref let create () = ref CCFQueue.empty let of_seq s = ref (CCFQueue.of_seq s) let iter f q = CCFQueue.iter f !q let push_front q x = q:= CCFQueue.cons x !q let push_back q x = q:= CCFQueue.snoc !q x let is_empty q = CCFQueue.is_empty !q let take_front q = let x, q' = CCFQueue.take_front_exn !q in q := q'; x let take_back q = let q', x = CCFQueue.take_back_exn !q in q := q'; x let append_back ~into q = into := CCFQueue.append !into !q let length q = CCFQueue.size !q end let base = (module Base : DEQUE) let cur = (module CCDeque : DEQUE) let fqueue = (module FQueue : DEQUE) let bench_iter n = let seq = Sequence.(1 -- n) in let make (module D : DEQUE) = let q = D.of_seq seq in fun () -> let n = ref 0 in D.iter (fun _ -> incr n) q; () in B.throughputN 3 ~repeat [ "base", make base, () ; "cur", make cur, () ; "fqueue", make fqueue, () ] let bench_push_front n = let make (module D : DEQUE) () = let q = D.create() in for i=0 to n do D.push_front q i done in B.throughputN 3 ~repeat [ "base", make base, () ; "cur", make cur, () ; "fqueue", make fqueue, () ] let bench_push_back n = let make (module D : DEQUE) = let q = D.create() in fun () -> for i=0 to n do D.push_back q i done in B.throughputN 3 ~repeat [ "base", make base, () ; "cur", make cur, () ; "fqueue", make fqueue, () ] let bench_append n = let seq = Sequence.(1 -- n) in let make (module D :DEQUE) = let q1 = D.of_seq seq in let q2 = D.of_seq seq in fun () -> D.append_back ~into:q1 q2 in B.throughputN 3 ~repeat [ "base", make base, () ; "cur", make cur, () ; "fqueue", make fqueue, () ] let bench_length n = let seq = Sequence.(1--n) in let make (module D:DEQUE) = let q = D.of_seq seq in fun () -> ignore (D.length q) in B.throughputN 3 ~repeat [ "base", make base, () ; "cur", make cur, () ; "fqueue", make fqueue, () ] let () = B.Tree.register ( "deque" @>>> [ "iter" @>> app_ints bench_iter [100; 1_000; 100_000] ; "push_front" @>> app_ints bench_push_front [100; 1_000; 100_000] ; "push_back" @>> app_ints bench_push_back [100; 1_000; 100_000] ; "append_back" @>> app_ints bench_append [100; 1_000; 100_000] ; "length" @>> app_ints bench_length [100; 1_000] ] ) end module Graph = struct (* divisors graph *) let div_children_ i = (* divisors of [i] that are [>= j] *) let rec aux j i yield = if j < i then ( if (i mod j = 0) then yield (i,j); aux (j+1) i yield ) in aux 1 i let div_graph_ = CCGraph.divisors_graph module H = Hashtbl.Make(CCInt) let dfs_raw n () = let explored = H.create (n+10) in let st = Stack.create() in let res = ref 0 in Stack.push n st; while not (Stack.is_empty st) do let i = Stack.pop st in if not (H.mem explored i) then ( H.add explored i (); incr res; div_children_ i (fun (_,j) -> Stack.push j st); ) done; !res let dfs_ n () = let tbl = CCGraph.mk_table ~eq:CCInt.equal ~hash:CCInt.hash (n+10) in CCGraph.Traverse.dfs ~tbl ~graph:div_graph_ (Sequence.return n) |> Sequence.fold (fun acc _ -> acc+1) 0 let dfs_event n () = let tbl = CCGraph.mk_table ~eq:CCInt.equal ~hash:CCInt.hash (n+10) in CCGraph.Traverse.Event.dfs ~tbl ~eq:CCInt.equal ~graph:div_graph_ (Sequence.return n) |> Sequence.fold (fun acc -> function | `Enter _ -> acc+1 | `Exit _ | `Edge _ -> acc) 0 let bench_dfs n = assert ( let n1 = dfs_raw n () in let n2 = dfs_ n () in let n3 = dfs_event n () in n1 = n2 && n2 = n3); B.throughputN 2 ~repeat [ "raw", dfs_raw n, () ; "ccgraph", dfs_ n, () ; "ccgraph_event", dfs_event n, () ] let () = B.Tree.register ("graph" @>>> [ "dfs" @>> app_ints bench_dfs [100; 1000; 10_000; 50_000; 100_000; 500_000] ] ) end module Str = struct (* random string, but always returns the same for a given size *) let rand_str_ ?(among="abcdefgh") n = let module Q = QCheck in let st = Random.State.make [| n + 17 |] in let gen_c = QCheck.Gen.oneofl (CCString.to_list among) in QCheck.Gen.string_size ~gen:gen_c (QCheck.Gen.return n) st let find ?(start=0) ~sub s = let n = String.length sub in let i = ref start in try while !i + n <= String.length s do if CCString.is_sub ~sub 0 s !i ~len:n then raise Exit; incr i done; -1 with Exit -> !i let rfind ~sub s = let n = String.length sub in let i = ref (String.length s - n) in try while !i >= 0 do if CCString.is_sub ~sub 0 s !i ~len:n then raise Exit; decr i done; ~-1 with Exit -> !i let find_all ?(start=0) ~sub s = let i = ref start in fun () -> let res = find ~sub s ~start:!i in if res = ~-1 then None else ( i := res + 1; Some res ) let find_all_l ?start ~sub s = find_all ?start ~sub s |> Gen.to_list let pp_pb needle haystack = Format.printf "search needle `%s` in `%s`...@." needle (String.sub haystack 0 (min 300 (String.length haystack))) (* benchmark String.{,r}find *) let bench_find_ ~dir ~size n = let needle = rand_str_ size in let haystack = rand_str_ n in pp_pb needle haystack; let mk_naive = match dir with | `Direct -> fun () -> find ~sub:needle haystack | `Reverse -> fun () -> rfind ~sub:needle haystack and mk_current = match dir with | `Direct -> fun () -> CCString.find ~sub:needle haystack | `Reverse -> fun () -> CCString.rfind ~sub:needle haystack and mk_current_compiled = match dir with | `Direct -> let f = CCString.find ~start:0 ~sub:needle in fun () -> f haystack | `Reverse -> let f = CCString.rfind ~sub:needle in fun () -> f haystack in assert (mk_naive () = mk_current ()); B.throughputN 3 ~repeat [ "naive", mk_naive, () ; "current", mk_current, () ; "current_compiled", mk_current_compiled, () ] (* benchmark String.find_all *) let bench_find_all ~size n = let needle = rand_str_ size in let haystack = rand_str_ n in pp_pb needle haystack; let mk_naive () = find_all_l ~sub:needle haystack and mk_current () = CCString.find_all_l ~sub:needle haystack and mk_current_compiled = let f = CCString.find_all_l ~start:0 ~sub:needle in fun () -> f haystack in assert (CCList.equal CCInt.equal (mk_naive ()) (mk_current ())); B.throughputN 3 ~repeat [ "naive", mk_naive, () ; "current", mk_current, () ; "current_compiled", mk_current_compiled, () ] (* benchmark String.find_all on constant strings *) let bench_find_all_special ~size n = let needle = CCString.repeat "a" (size-1) ^ "b" in let haystack = CCString.repeat "a" n in pp_pb needle haystack; let mk_naive () = find_all_l ~sub:needle haystack and mk_current () = CCString.find_all_l ~sub:needle haystack in assert (CCList.equal CCInt.equal (mk_naive ()) (mk_current ())); B.throughputN 3 ~repeat [ "naive", mk_naive, () ; "current", mk_current, () ] let bench_find = bench_find_ ~dir:`Direct let bench_rfind = bench_find_ ~dir:`Reverse module Pre = struct let prefix_rec ~pre s = let rec same s1 s2 i = if i = String.length s1 then true else ( CCChar.equal (String.unsafe_get s1 i) (String.unsafe_get s2 i) && same s1 s2 (i+1) ) in String.length pre <= String.length s && same pre s 0 let prefix_while ~pre s = String.length pre <= String.length s && begin let i = ref 0 in while !i < String.length pre && CCChar.equal (String.unsafe_get s !i) (String.unsafe_get pre !i) do incr i done; !i = String.length pre end exception Exit_false let prefix_for_exn ~pre s = String.length pre <= String.length s && try for i=0 to String.length pre-1 do if String.unsafe_get s i != String.unsafe_get pre i then raise Exit_false done; true with Exit_false -> false let prefix_sub ~pre:prfx s = let len_s = String.length s in let len_p = String.length prfx in if len_s < len_p then false else let sub = String.sub s 0 len_p in CCString.equal prfx sub let bat_prefix ~pre:p str = let len = String.length p in if String.length str < len then false else let rec loop str p i = if i = len then true else if not (CCChar.equal (String.unsafe_get str i) (String.unsafe_get p i)) then false else loop str p (i + 1) in loop str p 0 let make ~max_len ~max_len_prefix n = let rand = Random.State.make_self_init () in let input = Array.init n (fun _ -> let str = QCheck.Gen.(string_size ~gen:printable (10 -- max_len)) |> QCheck.Gen.generate1 ~rand in let prfx_len = Random.State.int rand (min max_len_prefix (String.length str + 1)) in let prfx = if Random.State.bool rand then String.sub str 0 prfx_len else String.sub str (String.length str - prfx_len) prfx_len in (prfx, str)) in let output = Array.map (fun (pre, str) -> prefix_rec ~pre str) input in let test f () = Array.iteri (fun i (pre, y) -> let res = f ~pre y in assert (CCBool.equal res output.(i))) input in Benchmark.throughputN 3 [ "containers", test CCString.prefix, (); "while_unsafe", test prefix_while, (); "rec_unsafe", test prefix_rec, (); "for_exn_unsafe", test prefix_for_exn, (); "sub_eq", test prefix_sub, (); "bat_prefix", test bat_prefix, (); ] end let () = B.Tree.register ( "string" @>>> [ "find" @>>> [ "3" @>> app_ints (bench_find ~size:3) [100; 100_000; 500_000] ; "5" @>> app_ints (bench_find ~size:5) [100; 100_000; 500_000] ; "15" @>> app_ints (bench_find ~size:15) [100; 100_000; 500_000] ; "50" @>> app_ints (bench_find ~size:50) [100; 100_000; 500_000] ; "500" @>> app_ints (bench_find ~size:500) [100_000; 500_000] ]; "find_all" @>>> [ "1" @>> app_ints (bench_find_all ~size:1) [100; 100_000; 500_000] ; "3" @>> app_ints (bench_find_all ~size:3) [100; 100_000; 500_000] ; "5" @>> app_ints (bench_find_all ~size:5) [100; 100_000; 500_000] ; "15" @>> app_ints (bench_find_all ~size:15) [100; 100_000; 500_000] ; "50" @>> app_ints (bench_find_all ~size:50) [100; 100_000; 500_000] ; "500" @>> app_ints (bench_find_all ~size:500) [100_000; 500_000] ; "special" @>>> [ "6" @>> app_ints (bench_find_all_special ~size:6) [100_000; 500_000] ; "30" @>> app_ints (bench_find_all_special ~size:30) [100_000; 500_000] ; "100" @>> app_ints (bench_find_all_special ~size:100) [100_000; 500_000] ] ]; "rfind" @>>> [ "3" @>> app_ints (bench_rfind ~size:3) [100; 100_000; 500_000] ; "15" @>> app_ints (bench_rfind ~size:15) [100; 100_000; 500_000] ; "50" @>> app_ints (bench_rfind ~size:50) [100; 100_000; 500_000] ; "500" @>> app_ints (bench_rfind ~size:500) [100_000; 500_000] ]; "prefix" @>>> [ "max_len:1000,max_pre_len:15" @>> app_ints (Pre.make ~max_len:1000 ~max_len_prefix:15) [100; 1_000]; "max_len:1000,max_pre_len:100" @>> app_ints (Pre.make ~max_len:1000 ~max_len_prefix:100) [100; 1_000]; "max_len:1000,max_pre_len:300" @>> app_ints (Pre.make ~max_len:1000 ~max_len_prefix:300) [100; 1_000]; ] ]) end let () = try B.Tree.run_global () with Arg.Help msg -> print_endline msg