(* copyright (c) 2013-2014, simon cruanes all rights reserved. redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. this software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. in no event shall the copyright holder or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage. *) (** {1 complements to list} *) type 'a t = 'a list val map : ('a -> 'b) -> 'a t -> 'b t (** Safe version of map *) val append : 'a t -> 'a t -> 'a t (** Safe version of append *) val (@) : 'a t -> 'a t -> 'a t val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool val flat_map : ('a -> 'b t) -> 'a t -> 'b t (** map and flatten at the same time (safe). Evaluation order is not guaranteed. *) val flatten : 'a t t -> 'a t (** Safe flatten *) val product : ('a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t (** cartesian product of the two lists, with the given combinator *) val (<*>) : ('a -> 'b) t -> 'a t -> 'b t val (<$>) : ('a -> 'b) -> 'a t -> 'b t val return : 'a -> 'a t val (>>=) : 'a t -> ('a -> 'b t) -> 'b t val range : int -> int -> int t (** [range i j] iterates on integers from [i] to [j] included. It works both for decreasing and increasing ranges *) val (--) : int -> int -> int t (** Infix alias for [range] *) val take : int -> 'a t -> 'a t (** take the [n] first elements, drop the rest *) val drop : int -> 'a t -> 'a t (** drop the [n] first elements, keep the rest *) val split : int -> 'a t -> 'a t * 'a t (** [split n l] returns [l1, l2] such that [l1 @ l2 = l] and [length l1 = min (length l) n] *) val last : int -> 'a t -> 'a t (** [last n l] takes the last [n] elements of [l] (or less if [l] doesn't have that many elements *) (** {2 Conversions} *) type 'a sequence = ('a -> unit) -> unit type 'a gen = unit -> 'a option type 'a printer = Buffer.t -> 'a -> unit val to_seq : 'a t -> 'a sequence val of_seq : 'a sequence -> 'a t val to_gen : 'a t -> 'a gen val of_gen : 'a gen -> 'a t (** {2 IO} *) val pp : ?start:string -> ?stop:string -> ?sep:string -> 'a printer -> 'a t printer