(* copyright (c) 2013-2015, simon cruanes all rights reserved. redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *) (** {1 Map specialized for Int keys} *) (* "Fast Mergeable Integer Maps", Okasaki & Gill. We use big-endian trees. *) (** Masks with exactly one bit active *) module Bit : sig type t = private int val highest : int -> t val min_int : t val is_0 : bit:t -> int -> bool val is_1 : bit:t -> int -> bool val mask : mask:t -> int -> int (* zeroes the bit, puts all lower bits to 1 *) val lt : t -> t -> bool val gt : t -> t -> bool end = struct type t = int let min_int = min_int let rec highest_bit_naive x m = if x=m then m else highest_bit_naive (x land (lnot m)) (2*m) let mask_20_ = 1 lsl 20 let mask_40_ = 1 lsl 40 let highest x = if x<0 then min_int else if Sys.word_size > 40 && x > mask_40_ then (* remove least significant 40 bits *) let x' = x land (lnot (mask_40_ -1)) in highest_bit_naive x' mask_40_ else if x> mask_20_ then (* small shortcut: remove least significant 20 bits *) let x' = x land (lnot (mask_20_ -1)) in highest_bit_naive x' mask_20_ else highest_bit_naive x 1 let is_0 ~bit x = x land bit = 0 let is_1 ~bit x = x land bit = bit let mask ~mask x = (x lor (mask -1)) land (lnot mask) (* low endian: let mask_ x ~mask = x land (mask - 1) *) let gt a b = (b != min_int) && (a = min_int || a > b) let lt a b = gt b a end type 'a t = | E (* empty *) | L of int * 'a (* leaf *) | N of int (* common prefix *) * Bit.t (* bit switch *) * 'a t * 'a t let empty = E let is_prefix_ ~prefix y ~bit = prefix = Bit.mask y ~mask:bit (*$inject let _list_uniq = CCList.sort_uniq ~cmp:(fun a b-> Pervasives.compare (fst a)(fst b)) *) (*$Q Q.int (fun i -> \ let b = Bit.highest i in \ ((b:>int) land i = (b:>int)) && (i < 0 || ((b:>int) <= i && (i-(b:>int)) < (b:>int)))) Q.int (fun i -> (Bit.highest i = Bit.min_int) = (i < 0)) Q.int (fun i -> ((Bit.highest i:>int) < 0) = (Bit.highest i = Bit.min_int)) Q.int (fun i -> let j = (Bit.highest i :> int) in j land (j-1) = 0) *) (*$T (Bit.highest min_int :> int) = min_int (Bit.highest 2 :> int) = 2 (Bit.highest 17 :> int) = 16 (Bit.highest 300 :> int) = 256 *) (* helper: let b_of_i i = let rec f acc i = if i=0 then acc else let q, r = i/2, abs (i mod 2) in f (r::acc) q in f [] i;; *) (* low endian: let branching_bit_ a _ b _ = lowest_bit_ (a lxor b) *) let branching_bit_ a b = Bit.highest (a lxor b) (* TODO use hint in branching_bit_ *) let check_invariants t = (* check that keys are prefixed by every node in their path *) let rec check_keys path t = match t with | E -> true | L (k, _) -> List.for_all (fun (prefix, switch, side) -> is_prefix_ ~prefix k ~bit:switch && match side with | `Left -> Bit.is_0 k ~bit:switch | `Right -> Bit.is_1 k ~bit:switch ) path | N (prefix, switch, l, r) -> check_keys ((prefix, switch, `Left) :: path) l && check_keys ((prefix, switch, `Right) :: path) r in check_keys [] t (*$Q Q.(list (pair int bool)) (fun l -> \ check_invariants (of_list l)) *) let rec find_exn k t = match t with | E -> raise Not_found | L (k', v) when k = k' -> v | L _ -> raise Not_found | N (prefix, m, l, r) -> if is_prefix_ ~prefix k ~bit:m then if Bit.is_0 k ~bit:m then find_exn k l else find_exn k r else raise Not_found (* XXX could test with lt_unsigned_? *) (* if k <= prefix (* search tree *) then find_exn k l else find_exn k r *) let find k t = try Some (find_exn k t) with Not_found -> None (*$Q Q.(list (pair int int)) (fun l -> \ let l = _list_uniq l in \ let m = of_list l in \ List.for_all (fun (k,v) -> find k m = Some v) l) *) let mem k t = try ignore (find_exn k t); true with Not_found -> false (*$Q Q.(list (pair int int)) (fun l -> \ let m = of_list l in \ List.for_all (fun (k,_) -> mem k m) l) *) let mk_node_ prefix switch l r = match l, r with | E, o | o, E -> o | _ -> N (prefix, switch, l, r) (* join trees t1 and t2 with prefix p1 and p2 respectively (p1 and p2 do not overlap) *) let join_ t1 p1 t2 p2 = let switch = branching_bit_ p1 p2 in let prefix = Bit.mask p1 ~mask:switch in if Bit.is_0 p1 ~bit:switch then ( assert (Bit.is_1 p2 ~bit:switch); mk_node_ prefix switch t1 t2 ) else ( assert (Bit.is_0 p2 ~bit:switch); mk_node_ prefix switch t2 t1 ) let singleton k v = L (k, v) (* c: conflict function *) let rec insert_ c k v t = match t with | E -> L (k, v) | L (k', v') -> if k=k' then L (k, c ~old:v' v) else join_ t k' (L (k, v)) k | N (prefix, switch, l, r) -> if is_prefix_ ~prefix k ~bit:switch then if Bit.is_0 k ~bit:switch then N(prefix, switch, insert_ c k v l, r) else N(prefix, switch, l, insert_ c k v r) else join_ (L(k,v)) k t prefix let add k v t = insert_ (fun ~old:_ v -> v) k v t (*$Q & ~count:20 Q.(list (pair int int)) (fun l -> \ let l = _list_uniq l in let m = of_list l in \ List.for_all (fun (k,v) -> find_exn k m = v) l) *) let rec remove k t = match t with | E -> E | L (k', _) -> if k=k' then E else t | N (prefix, switch, l, r) -> if is_prefix_ ~prefix k ~bit:switch then if Bit.is_0 k ~bit:switch then mk_node_ prefix switch (remove k l) r else mk_node_ prefix switch l (remove k r) else t (* not present *) (*$Q & ~count:20 Q.(list (pair int int)) (fun l -> \ let l = _list_uniq l in let m = of_list l in \ List.for_all (fun (k,_) -> mem k m && not (mem k (remove k m))) l) *) let update k f t = try let v = find_exn k t in begin match f (Some v) with | None -> remove k t | Some v' -> add k v' t end with Not_found -> match f None with | None -> t | Some v -> add k v t (*$= & ~printer:Q.Print.(list (pair int int)) [1,1; 2, 22; 3, 3] \ (of_list [1,1;2,2;3,3] \ |> update 2 (function None -> assert false | Some _ -> Some 22) \ |> to_list |> List.sort Pervasives.compare) *) let doubleton k1 v1 k2 v2 = add k1 v1 (singleton k2 v2) let rec equal ~eq a b = match a, b with | E, E -> true | L (ka, va), L (kb, vb) -> ka = kb && eq va vb | N (pa, sa, la, ra), N (pb, sb, lb, rb) -> pa=pb && sa=sb && equal ~eq la lb && equal ~eq ra rb | E, _ | N _, _ | L _, _ -> false (*$Q Q.(list (pair int bool)) ( fun l -> \ equal ~eq:(=) (of_list l) (of_list (List.rev l))) *) let rec iter f t = match t with | E -> () | L (k, v) -> f k v | N (_, _, l, r) -> iter f l; iter f r let rec fold f t acc = match t with | E -> acc | L (k, v) -> f k v acc | N (_, _, l, r) -> let acc = fold f l acc in fold f r acc let cardinal t = fold (fun _ _ n -> n+1) t 0 let rec choose_exn = function | E -> raise Not_found | L (k, v) -> k, v | N (_, _, l, _) -> choose_exn l let choose t = try Some (choose_exn t) with Not_found -> None let rec union f t1 t2 = match t1, t2 with | E, o | o, E -> o | L (k, v), o | o, L (k, v) -> (* insert k, v into o *) insert_ (fun ~old v -> f k old v) k v o | N (p1, m1, l1, r1), N (p2, m2, l2, r2) -> if p1 = p2 && m1 = m2 then mk_node_ p1 m1 (union f l1 l2) (union f r1 r2) else if Bit.gt m1 m2 && is_prefix_ ~prefix:p1 p2 ~bit:m1 then if Bit.is_0 p2 ~bit:m1 then N (p1, m1, union f l1 t2, r1) else N (p1, m1, l1, union f r1 t2) else if Bit.lt m1 m2 && is_prefix_ ~prefix:p2 p1 ~bit:m2 then if Bit.is_0 p1 ~bit:m2 then N (p2, m2, union f t1 l2, r2) else N (p2, m2, l2, union f t1 r2) else join_ t1 p1 t2 p2 (*$Q & ~small:(fun (a,b) -> List.length a + List.length b) Q.(pair (list (pair int bool)) (list (pair int bool))) (fun (l1,l2) -> \ check_invariants (union (fun _ _ x -> x) (of_list l1) (of_list l2))) Q.(pair (list (pair int bool)) (list (pair int bool))) (fun (l1,l2) -> \ check_invariants (inter (fun _ _ x -> x) (of_list l1) (of_list l2))) *) (* associativity of union *) (*$Q & ~small:(fun (a,b,c) -> List.(length a + length b + length c)) Q.(let p = list (pair int int) in triple p p p) (fun (l1,l2,l3) -> \ let m1 = of_list l1 and m2 = of_list l2 and m3 = of_list l3 in \ let f _ x y = max x y in \ equal ~eq:(=) (union f (union f m1 m2) m3) (union f m1 (union f m2 m3))) *) (*$R assert_equal ~cmp:(equal ~eq:(=)) ~printer:(CCFormat.to_string (print CCString.print)) (of_list [1, "1"; 2, "2"; 3, "3"; 4, "4"]) (union (fun _ a b -> a) (of_list [1, "1"; 3, "3"]) (of_list [2, "2"; 4, "4"])); *) (*$R assert_equal ~cmp:(equal ~eq:(=)) ~printer:(CCFormat.to_string (print CCString.print)) (of_list [1, "1"; 2, "2"; 3, "3"; 4, "4"]) (union (fun _ a b -> a) (of_list [1, "1"; 2, "2"; 3, "3"]) (of_list [2, "2"; 4, "4"])) *) (*$Q Q.(list (pair int bool)) (fun l -> \ equal ~eq:(=) (of_list l) (union (fun _ a _ -> a) (of_list l)(of_list l))) *) let rec inter f a b = match a, b with | E, _ | _, E -> E | L (k, v), o | o, L (k, v) -> begin try let v' = find_exn k o in L (k, f k v v') with Not_found -> E end | N (p1, m1, l1, r1), N (p2, m2, l2, r2) -> if p1 = p2 && m1 = m2 then mk_node_ p1 m1 (inter f l1 l2) (inter f r1 r2) else if Bit.gt m1 m2 && is_prefix_ ~prefix:p1 p2 ~bit:m1 then if Bit.is_0 p2 ~bit:m1 then inter f l1 b else inter f r1 b else if Bit.lt m1 m2 && is_prefix_ ~prefix:p2 p1 ~bit:m2 then if Bit.is_0 p1 ~bit:m2 then inter f l2 a else inter f r2 a else E (*$R assert_equal ~cmp:(equal ~eq:(=)) ~printer:(CCFormat.to_string (print CCString.print)) (singleton 2 "2") (inter (fun _ a b -> a) (of_list [1, "1"; 2, "2"; 3, "3"]) (of_list [2, "2"; 4, "4"])) *) (*$Q Q.(list (pair int bool)) (fun l -> \ equal ~eq:(=) (of_list l) (inter (fun _ a _ -> a) (of_list l)(of_list l))) *) (* associativity of inter *) (*$Q & ~small:(fun (a,b,c) -> List.(length a + length b + length c)) Q.(let p = list (pair int int) in triple p p p) (fun (l1,l2,l3) -> \ let m1 = of_list l1 and m2 = of_list l2 and m3 = of_list l3 in \ let f _ x y = max x y in \ equal ~eq:(=) (inter f (inter f m1 m2) m3) (inter f m1 (inter f m2 m3))) *) (** {2 Whole-collection operations} *) type 'a sequence = ('a -> unit) -> unit type 'a gen = unit -> 'a option type 'a klist = unit -> [`Nil | `Cons of 'a * 'a klist] let add_list t l = List.fold_left (fun t (k,v) -> add k v t) t l let of_list l = add_list empty l let to_list t = fold (fun k v l -> (k,v) :: l) t [] (*$Q Q.(list (pair int int)) (fun l -> \ let l = List.map (fun (k,v) -> abs k,v) l in \ let rec is_sorted = function [] | [_] -> true \ | x::y::tail -> x <= y && is_sorted (y::tail) in \ of_list l |> to_list |> List.rev_map fst |> is_sorted) *) (*$Q Q.(list (pair int int)) (fun l -> \ of_list l |> cardinal = List.length l) *) let add_seq t seq = let t = ref t in seq (fun (k,v) -> t := add k v !t); !t let of_seq seq = add_seq empty seq let to_seq t yield = iter (fun k v -> yield (k,v)) t let keys t yield = iter (fun k _ -> yield k) t let values t yield = iter (fun _ v -> yield v) t let rec add_gen m g = match g() with | None -> m | Some (k,v) -> add_gen (add k v m) g let of_gen g = add_gen empty g let to_gen m = let st = Stack.create () in Stack.push m st; let rec next() = if Stack.is_empty st then None else explore (Stack.pop st) and explore n = match n with | E -> next() (* backtrack *) | L (k,v) -> Some (k,v) | N (_, _, l, r) -> Stack.push r st; explore l in next (*$T doubleton 1 "a" 2 "b" |> to_gen |> of_gen |> to_list \ |> List.sort Pervasives.compare = [1, "a"; 2, "b"] *) (*$Q Q.(list (pair int bool)) (fun l -> \ let m = of_list l in equal ~eq:(=) m (m |> to_gen |> of_gen)) *) (* E < L < N; arbitrary order for switches *) let compare ~cmp a b = let rec cmp_gen cmp a b = match a(), b() with | None, None -> 0 | Some _, None -> 1 | None, Some _ -> -1 | Some (ka, va), Some (kb, vb) -> if ka=kb then let c = cmp va vb in if c=0 then cmp_gen cmp a b else c else Pervasives.compare ka kb in cmp_gen cmp (to_gen a) (to_gen b) (*$Q Q.(list (pair int bool)) ( fun l -> \ let m1 = of_list l and m2 = of_list (List.rev l) in \ compare ~cmp:Pervasives.compare m1 m2 = 0) *) (*$QR Q.(pair (list (pair int bool)) (list (pair int bool))) (fun (l1, l2) -> let l1 = List.map (fun (k,v) -> abs k,v) l1 in let l2 = List.map (fun (k,v) -> abs k,v) l2 in let m1 = of_list l1 and m2 = of_list l2 in let c = compare ~cmp:Pervasives.compare m1 m2 and c' = compare ~cmp:Pervasives.compare m2 m1 in (c = 0) = (c' = 0) && (c < 0) = (c' > 0) && (c > 0) = (c' < 0)) *) (*$QR Q.(pair (list (pair int bool)) (list (pair int bool))) (fun (l1, l2) -> let l1 = List.map (fun (k,v) -> abs k,v) l1 in let l2 = List.map (fun (k,v) -> abs k,v) l2 in let m1 = of_list l1 and m2 = of_list l2 in (compare ~cmp:Pervasives.compare m1 m2 = 0) = equal ~eq:(=) m1 m2) *) let rec add_klist m l = match l() with | `Nil -> m | `Cons ((k,v), tl) -> add_klist (add k v m) tl let of_klist l = add_klist empty l let to_klist m = (* [st]: stack of alternatives *) let rec explore st m () = match m with | E -> next st () | L (k,v) -> `Cons ((k, v), next st) | N (_, _, l, r) -> explore (r::st) l () and next st () = match st with | [] -> `Nil | x :: st' -> explore st' x () in next [m] (*$Q Q.(list (pair int bool)) (fun l -> \ let m = of_list l in equal ~eq:(=) m (m |> to_klist |> of_klist)) *) type 'a tree = unit -> [`Nil | `Node of 'a * 'a tree list] let rec as_tree t () = match t with | E -> `Nil | L (k, v) -> `Node (`Leaf (k, v), []) | N (prefix, switch, l, r) -> `Node (`Node (prefix, (switch:>int)), [as_tree l; as_tree r]) (** {2 IO} *) type 'a printer = Format.formatter -> 'a -> unit let print pp_x out m = Format.fprintf out "@[intmap {@,"; let first = ref true in iter (fun k v -> if !first then first := false else Format.pp_print_string out ", "; Format.fprintf out "%d -> " k; pp_x out v; Format.pp_print_cut out () ) m; Format.fprintf out "}@]"