(* This file is free software, part of containers. See file "license" for more details. *) open CCShims_ include Int32 let min : t -> t -> t = Stdlib.min let max : t -> t -> t = Stdlib.max let hash x = Stdlib.abs (to_int x) let sign i = compare i zero let pow a b = let rec aux acc = function | 1l -> acc | n -> if equal (rem n 2l) zero then aux (mul acc acc) (div n 2l) else mul acc (aux (mul acc acc) (div n 2l)) in match b with | 0l -> if equal a 0l then raise (Invalid_argument "pow: undefined value 0^0") else 1l | b when compare b 0l < 0 -> raise (Invalid_argument "pow: can't raise int to negative power") | b -> aux a b (*$T pow 2l 10l = 1024l pow 2l 15l = 32768l pow 10l 5l = 100000l pow 42l 0l = 1l pow 0l 1l = 0l *) let floor_div a n = if compare a 0l < 0 && compare n 0l >= 0 then sub (div (add a 1l) n) 1l else if compare a 0l > 0 && compare n 0l < 0 then sub (div (sub a 1l) n) 1l else div a n (*$T (floor_div 3l 5l = 0l) (floor_div 5l 5l = 1l) (floor_div 20l 5l = 4l) (floor_div 12l 5l = 2l) (floor_div 0l 5l = 0l) (floor_div (-1l) 5l = -1l) (floor_div (-5l) 5l = -1l) (floor_div (-12l) 5l = -3l) (floor_div 0l (-5l) = 0l) (floor_div 3l (-5l) = -1l) (floor_div 5l (-5l) = -1l) (floor_div 9l (-5l) = -2l) (floor_div 20l (-5l) = -4l) (floor_div (-2l) (-5l) = 0l) (floor_div (-8l) (-5l) = 1l) (floor_div (-35l) (-5l) = 7l) try ignore (floor_div 12l 0l); false with Division_by_zero -> true try ignore (floor_div (-12l) 0l); false with Division_by_zero -> true *) (*$Q (Q.pair (Q.map of_int Q.small_signed_int) (Q.map of_int Q.small_nat)) \ (fun (n, m) -> let m = m + 1l in \ floor_div n m = of_float @@ floor (to_float n /. to_float m)) (Q.pair (Q.map of_int Q.small_signed_int) (Q.map of_int Q.small_nat)) \ (fun (n, m) -> let m = m + 1l in \ floor_div n (-m) = of_float @@ floor (to_float n /. to_float (-m))) *) type 'a printer = Format.formatter -> 'a -> unit type 'a random_gen = Random.State.t -> 'a type 'a iter = ('a -> unit) -> unit let range i j yield = let rec up i j yield = if equal i j then yield i else ( yield i; up (add i 1l) j yield ) and down i j yield = if equal i j then yield i else ( yield i; down (sub i 1l) j yield ) in if compare i j <= 0 then up i j yield else down i j yield (*$= & ~printer:Q.Print.(list to_string) [0l;1l;2l;3l;4l;5l] (range 0l 5l |> Iter.to_list) [0l] (range 0l 0l |> Iter.to_list) [5l;4l;3l;2l] (range 5l 2l |> Iter.to_list) *) let range' i j yield = if compare i j < 0 then range i (sub j 1l) yield else if equal i j then () else range i (add j 1l) yield let range_by ~step i j yield = let rec range i j yield = if equal i j then yield i else ( yield i; range (add i step) j yield ) in if equal step 0l then raise (Invalid_argument "CCInt32.range_by") else if (if compare step 0l > 0 then compare i j > 0 else compare i j < 0) then () else range i (add (mul (div (sub j i) step) step) i) yield (* note: the last test checks that no error occurs due to overflows. *) (*$= & ~printer:Q.Print.(list to_string) [0l] (range_by ~step:1l 0l 0l |> Iter.to_list) [] (range_by ~step:1l 5l 0l |> Iter.to_list) [] (range_by ~step:2l 1l 0l |> Iter.to_list) [0l;2l;4l] (range_by ~step:2l 0l 4l |> Iter.to_list) [0l;2l;4l] (range_by ~step:2l 0l 5l |> Iter.to_list) [0l] (range_by ~step:(neg 1l) 0l 0l |> Iter.to_list) [] (range_by ~step:(neg 1l) 0l 5l |> Iter.to_list) [] (range_by ~step:(neg 2l) 0l 1l |> Iter.to_list) [5l;3l;1l] (range_by ~step:(neg 2l) 5l 1l |> Iter.to_list) [5l;3l;1l] (range_by ~step:(neg 2l) 5l 0l |> Iter.to_list) [0l] (range_by ~step:max_int 0l 2l |> Iter.to_list) *) (*$Q Q.(pair (map of_int small_int) (map of_int small_int)) (fun (i,j) -> \ let i = min i j and j = max i j in \ CCList.equal CCInt32.equal \ (CCInt32.range_by ~step:1l i j |> Iter.to_list) \ (CCInt32.range i j |> Iter.to_list) ) *) let random n st = Random.State.int32 st n let random_small = random 100l let random_range i j st = add i (random (sub j i) st) (** {2 Conversion} *) let of_string_exn = of_string let of_string x = try Some (of_string_exn x) with Failure _ -> None let of_string_opt = of_string let most_significant_bit = logxor (neg 1l) (shift_right_logical (neg 1l) 1) type output = char -> unit (* abstract printer *) let to_binary_gen (out:output) n = let n = if compare n 0l <0 then (out '-'; neg n) else n in out '0'; out 'b'; let rec loop started bit n = if equal bit 0l then ( if not started then out '0' ) else ( let b = logand n bit in if equal b 0l then ( if started then out '0'; loop started (shift_right_logical bit 1) n ) else ( out '1'; loop true (shift_right_logical bit 1) n ) ) in loop false most_significant_bit n let to_string_binary n = let buf = Buffer.create 16 in to_binary_gen (Buffer.add_char buf) n; Buffer.contents buf (*$= & ~printer:CCFun.id "0b111" (to_string_binary 7l) "-0b111" (to_string_binary (-7l)) "0b0" (to_string_binary 0l) *) (** {2 Printing} *) let pp out n = Format.pp_print_string out (to_string n) let pp_binary out n = to_binary_gen (Format.pp_print_char out) n (** {2 Infix Operators} *) module Infix = struct let (+) = add let (-) = sub let (~-) = neg let ( * ) = mul let (/) = div let ( ** ) = pow let (--) = range let (--^) = range' let (mod) = rem let (land) = logand let (lor) = logor let (lxor) = logxor let lnot = lognot let (lsl) = shift_left let (lsr) = shift_right_logical let (asr) = shift_right let (=) = equal let (<>) = Stdlib.(<>) let (<) = Stdlib.(<) let (<=) = Stdlib.(<=) let (>) = Stdlib.(>) let (>=) = Stdlib.(>=) end include Infix