(* This file is free software, part of containers. See file "license" for more details. *) type 'a iter = ('a -> unit) -> unit type 'a gen = unit -> 'a option type 'a equal = 'a -> 'a -> bool type 'a ord = 'a -> 'a -> int type 'a printer = Format.formatter -> 'a -> unit type + 'a t = unit -> 'a node and +'a node = 'a Seq.node = | Nil | Cons of 'a * 'a t let nil () = Nil let cons a b () = Cons (a,b) let empty = nil let singleton x () = Cons (x, nil) let rec _forever x () = Cons (x, _forever x) let rec _repeat n x () = if n<=0 then Nil else Cons (x, _repeat (n-1) x) let repeat ?n x = match n with | None -> _forever x | Some n -> _repeat n x (*$T repeat ~n:4 0 |> to_list = [0;0;0;0] repeat ~n:0 1 |> to_list = [] repeat 1 |> take 20 |> to_list = (repeat ~n:20 1 |> to_list) *) let is_empty l = match l () with | Nil -> true | Cons _ -> false let head_exn l = match l() with | Nil -> raise Not_found | Cons (x, _) -> x let head l = match l() with Nil -> None | Cons (x, _) -> Some x let tail_exn l = match l() with | Nil -> raise Not_found | Cons (_, l) -> l let tail l = match l() with | Nil -> None | Cons (_, l) -> Some l let rec equal eq l1 l2 = match l1(), l2() with | Nil, Nil -> true | Nil, _ | _, Nil -> false | Cons (x1,l1'), Cons (x2,l2') -> eq x1 x2 && equal eq l1' l2' let rec compare cmp l1 l2 = match l1(), l2() with | Nil, Nil -> 0 | Nil, _ -> -1 | _, Nil -> 1 | Cons (x1,l1'), Cons (x2,l2') -> let c = cmp x1 x2 in if c = 0 then compare cmp l1' l2' else c let rec fold f acc res = match res () with | Nil -> acc | Cons (s, cont) -> fold f (f acc s) cont let fold_left = fold let rec iter f l = match l () with | Nil -> () | Cons (x, l') -> f x; iter f l' let iteri f l = let rec aux f l i = match l() with | Nil -> () | Cons (x, l') -> f i x; aux f l' (i+1) in aux f l 0 let length l = fold (fun acc _ -> acc+1) 0 l let rec take n (l:'a t) () = if n=0 then Nil else match l () with | Nil -> Nil | Cons (x,l') -> Cons (x, take (n-1) l') let rec take_while p l () = match l () with | Nil -> Nil | Cons (x,l') -> if p x then Cons (x, take_while p l') else Nil (*$T of_list [1;2;3;4] |> take_while (fun x->x < 4) |> to_list = [1;2;3] *) let rec drop n (l:'a t) () = match l () with | l' when n=0 -> l' | Nil -> Nil | Cons (_,l') -> drop (n-1) l' () let rec drop_while p l () = match l() with | Nil -> Nil | Cons (x,l') when p x -> drop_while p l' () | Cons _ as res -> res (*$Q (Q.pair (Q.list Q.small_int) Q.small_int) (fun (l,n) -> \ let s = of_list l in let s1, s2 = take n s, drop n s in \ append s1 s2 |> to_list = l ) *) let rec map f l () = match l () with | Nil -> Nil | Cons (x, l') -> Cons (f x, map f l') (*$T (map ((+) 1) (1 -- 5) |> to_list) = (2 -- 6 |> to_list) *) let mapi f l = let rec aux f l i () = match l() with | Nil -> Nil | Cons (x, tl) -> Cons (f i x, aux f tl (i+1)) in aux f l 0 (*$T mapi (fun i x -> i,x) (1 -- 3) |> to_list = [0, 1; 1, 2; 2, 3] *) let rec fmap f (l:'a t) () = match l() with | Nil -> Nil | Cons (x, l') -> begin match f x with | None -> fmap f l' () | Some y -> Cons (y, fmap f l') end (*$T fmap (fun x -> if x mod 2=0 then Some (x*3) else None) (1--10) |> to_list \ = [6;12;18;24;30] *) let rec filter p l () = match l () with | Nil -> Nil | Cons (x, l') -> if p x then Cons (x, filter p l') else filter p l' () let rec append l1 l2 () = match l1 () with | Nil -> l2 () | Cons (x, l1') -> Cons (x, append l1' l2) let rec cycle l () = append l (cycle l) () (*$T cycle (of_list [1;2]) |> take 5 |> to_list = [1;2;1;2;1] cycle (of_list [1; ~-1]) |> take 100_000 |> fold (+) 0 = 0 *) let rec unfold f acc () = match f acc with | None -> Nil | Some (x, acc') -> Cons (x, unfold f acc') (*$T let f = function 10 -> None | x -> Some (x, x+1) in \ unfold f 0 |> to_list = [0;1;2;3;4;5;6;7;8;9] *) let rec flat_map f l () = match l () with | Nil -> Nil | Cons (x, l') -> _flat_map_app f (f x) l' () and _flat_map_app f l l' () = match l () with | Nil -> flat_map f l' () | Cons (x, tl) -> Cons (x, _flat_map_app f tl l') let product_with f l1 l2 = let rec _next_left h1 tl1 h2 tl2 () = match tl1() with | Nil -> _next_right ~die:true h1 tl1 h2 tl2 () | Cons (x, tl1') -> _map_list_left x h2 (_next_right ~die:false (x::h1) tl1' h2 tl2) () and _next_right ~die h1 tl1 h2 tl2 () = match tl2() with | Nil when die -> Nil | Nil -> _next_left h1 tl1 h2 tl2 () | Cons (y, tl2') -> _map_list_right h1 y (_next_left h1 tl1 (y::h2) tl2') () and _map_list_left x l kont () = match l with | [] -> kont() | y::l' -> Cons (f x y, _map_list_left x l' kont) and _map_list_right l y kont () = match l with | [] -> kont() | x::l' -> Cons (f x y, _map_list_right l' y kont) in _next_left [] l1 [] l2 let product l1 l2 = product_with (fun x y -> x,y) l1 l2 let rec group eq l () = match l() with | Nil -> Nil | Cons (x, l') -> Cons (cons x (take_while (eq x) l'), group eq (drop_while (eq x) l')) (*$T of_list [1;1;1;2;2;3;3;1] |> group (=) |> map to_list |> to_list = \ [[1;1;1]; [2;2]; [3;3]; [1]] *) let rec _uniq eq prev l () = match prev, l() with | _, Nil -> Nil | None, Cons (x, l') -> Cons (x, _uniq eq (Some x) l') | Some y, Cons (x, l') -> if eq x y then _uniq eq prev l' () else Cons (x, _uniq eq (Some x) l') let uniq eq l = _uniq eq None l let rec filter_map f l () = match l() with | Nil -> Nil | Cons (x, l') -> begin match f x with | None -> filter_map f l' () | Some y -> Cons (y, filter_map f l') end let flatten l = flat_map (fun x->x) l let range i j = let rec aux i j () = if i=j then Cons(i, nil) else if i to_list = [0;1;2;3;4;5] range 0 0 |> to_list = [0] range 5 2 |> to_list = [5;4;3;2] *) let (--) = range let (--^) i j = if i=j then empty else if i to_list = [1;2;3;4] 5 --^ 1 |> to_list = [5;4;3;2] 1 --^ 2 |> to_list = [1] 0 --^ 0 |> to_list = [] *) let rec fold2 f acc l1 l2 = match l1(), l2() with | Nil, _ | _, Nil -> acc | Cons(x1,l1'), Cons(x2,l2') -> fold2 f (f acc x1 x2) l1' l2' let rec map2 f l1 l2 () = match l1(), l2() with | Nil, _ | _, Nil -> Nil | Cons(x1,l1'), Cons(x2,l2') -> Cons (f x1 x2, map2 f l1' l2') let rec iter2 f l1 l2 = match l1(), l2() with | Nil, _ | _, Nil -> () | Cons(x1,l1'), Cons(x2,l2') -> f x1 x2; iter2 f l1' l2' let rec for_all2 f l1 l2 = match l1(), l2() with | Nil, _ | _, Nil -> true | Cons(x1,l1'), Cons(x2,l2') -> f x1 x2 && for_all2 f l1' l2' let rec exists2 f l1 l2 = match l1(), l2() with | Nil, _ | _, Nil -> false | Cons(x1,l1'), Cons(x2,l2') -> f x1 x2 || exists2 f l1' l2' let rec merge cmp l1 l2 () = match l1(), l2() with | Nil, tl2 -> tl2 | tl1, Nil -> tl1 | Cons(x1,l1'), Cons(x2,l2') -> if cmp x1 x2 < 0 then Cons (x1, merge cmp l1' l2) else Cons (x2, merge cmp l1 l2') let rec zip a b () = match a(), b() with | Nil, _ | _, Nil -> Nil | Cons (x, a'), Cons (y, b') -> Cons ((x,y), zip a' b') let unzip l = let rec first l () = match l() with | Nil -> Nil | Cons ((x,_), tl) -> Cons (x, first tl) and second l () = match l() with | Nil -> Nil | Cons ((_, y), tl) -> Cons (y, second tl) in first l, second l (*$Q Q.(list (pair int int)) (fun l -> \ let l = of_list l in let a, b = unzip l in equal (=) l (zip a b)) *) (** {2 Implementations} *) let return x () = Cons (x, nil) let pure = return let (>>=) xs f = flat_map f xs let (>|=) xs f = map f xs let (<*>) fs xs = product_with (fun f x -> f x) fs xs (** {2 Conversions} *) let rec _to_rev_list acc l = match l() with | Nil -> acc | Cons (x,l') -> _to_rev_list (x::acc) l' let to_rev_list l = _to_rev_list [] l let to_list l = let rec direct i (l:'a t) = match l () with | Nil -> [] | _ when i=0 -> List.rev (_to_rev_list [] l) | Cons (x, f) -> x :: direct (i-1) f in direct 200 l let of_list l = let rec aux l () = match l with | [] -> Nil | x::l' -> Cons (x, aux l') in aux l let of_array a = let rec aux a i () = if i=Array.length a then Nil else Cons (a.(i), aux a (i+1)) in aux a 0 let to_array l = match l() with | Nil -> [| |] | Cons (x, _) -> let n = length l in let a = Array.make n x in (* need first elem to create [a] *) iteri (fun i x -> a.(i) <- x) l; a (*$Q Q.(array int) (fun a -> of_array a |> to_array = a) *) (*$T of_array [| 1; 2; 3 |] |> to_list = [1;2;3] of_list [1;2;3] |> to_array = [| 1; 2; 3; |] *) let rec to_iter res k = match res () with | Nil -> () | Cons (s, f) -> k s; to_iter f k let to_gen l = let l = ref l in fun () -> match !l () with | Nil -> None | Cons (x,l') -> l := l'; Some x type 'a of_gen_state = | Of_gen_thunk of 'a gen | Of_gen_saved of 'a node let of_gen g = let rec consume r () = match !r with | Of_gen_saved cons -> cons | Of_gen_thunk g -> begin match g() with | None -> r := Of_gen_saved Nil; Nil | Some x -> let tl = consume (ref (Of_gen_thunk g)) in let l = Cons (x, tl) in r := Of_gen_saved l; l end in consume (ref (Of_gen_thunk g)) (*$R let g = let n = ref 0 in fun () -> Some (incr n; !n) in let l = of_gen g in assert_equal [1;2;3;4;5;6;7;8;9;10] (take 10 l |> to_list); assert_equal [1;2;3;4;5;6;7;8;9;10] (take 10 l |> to_list); assert_equal [11;12] (drop 10 l |> take 2 |> to_list); *) let sort ~cmp l = let l = to_list l in of_list (List.sort cmp l) let sort_uniq ~cmp l = let l = to_list l in uniq (fun x y -> cmp x y = 0) (of_list (List.sort cmp l)) type 'a memoize = | MemoThunk | MemoSave of 'a node let rec memoize f = let r = ref MemoThunk in fun () -> match !r with | MemoSave l -> l | MemoThunk -> let l = match f() with | Nil -> Nil | Cons (x, tail) -> Cons (x, memoize tail) in r := MemoSave l; l (*$R let printer = Q.Print.(list int) in let gen () = let rec l = let r = ref 0 in fun () -> incr r; Cons (!r, l) in l in let l1 = gen () in assert_equal ~printer [1;2;3;4] (take 4 l1 |> to_list); assert_equal ~printer [5;6;7;8] (take 4 l1 |> to_list); let l2 = gen () |> memoize in assert_equal ~printer [1;2;3;4] (take 4 l2 |> to_list); assert_equal ~printer [1;2;3;4] (take 4 l2 |> to_list); *) (** {2 Fair Combinations} *) let rec interleave a b () = match a() with | Nil -> b () | Cons (x, tail) -> Cons (x, interleave b tail) let rec fair_flat_map f a () = match a() with | Nil -> Nil | Cons (x, tail) -> let y = f x in interleave y (fair_flat_map f tail) () let rec fair_app f a () = match f() with | Nil -> Nil | Cons (f1, fs) -> interleave (map f1 a) (fair_app fs a) () let (>>-) a f = fair_flat_map f a let (<.>) f a = fair_app f a (*$T interleave (of_list [1;3;5]) (of_list [2;4;6]) |> to_list = [1;2;3;4;5;6] fair_app (of_list [(+)1; ( * ) 3]) (of_list [1; 10]) \ |> to_list |> List.sort Stdlib.compare = [2; 3; 11; 30] *) (** {2 Infix} *) module Infix = struct let (>>=) = (>>=) let (>|=) = (>|=) let (<*>) = (<*>) let (>>-) = (>>-) let (<.>) = (<.>) let (--) = (--) let (--^) = (--^) end (** {2 Monadic Operations} *) module type MONAD = sig type 'a t val return : 'a -> 'a t val (>>=) : 'a t -> ('a -> 'b t) -> 'b t end module Traverse(M : MONAD) = struct open M let map_m f l = let rec aux acc l = match l () with | Nil -> return (of_list (List.rev acc)) | Cons (x,l') -> f x >>= fun x' -> aux (x' :: acc) l' in aux [] l let sequence_m l = map_m (fun x->x) l let rec fold_m f acc l = match l() with | Nil -> return acc | Cons (x,l') -> f acc x >>= fun acc' -> fold_m f acc' l' end (** {2 IO} *) let pp ?(pp_start=fun _ () -> ()) ?(pp_stop=fun _ () -> ()) ?(pp_sep=fun out () -> Format.fprintf out ",@ ") pp_item fmt l = pp_start fmt (); let rec pp fmt l = match l() with | Nil -> () | Cons (x,l') -> pp_sep fmt (); Format.pp_print_cut fmt (); pp_item fmt x; pp fmt l' in begin match l() with | Nil -> () | Cons (x,l') -> pp_item fmt x; pp fmt l' end; pp_stop fmt ()