(* Copyright (c) 2013, Simon Cruanes All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *) (** {2 Hypergraph Representation} Generalized Hypergraphs. Objects are either constants, or hyperedges that connect [n] other objets together (a [n]-tuple). Each hyperedge can contain additional data. *) module type S = sig type const (** Constants. Those are what can annotate hyperedges or make single, leaf, nodes. *) type t (** An hypergraph. It stores a set of edges, and possibly inherits from another graph. *) type edge (** A single edge of the hypergraph. *) val self : t -> edge (** The edge that represents (reifies) the hypergraph itself *) val eq : edge -> edge -> bool (** Equality of the two edges. *) val arity : edge -> int (** Number of sub-elements of the edge (how many other edges it connects together) *) val nth : edge -> int -> edge (** [nth x i] accesses the [i]-th sub-node of [x]. @raise Invalid_argument if [i >= arity x]. *) val make_graph : ?parent:t -> unit -> t (** New graph, possibly inheriting from another graph. *) val make_edge : t -> edge array -> edge (** Create a new hyperedge from an ordered tuple of sub-edges. The edge belongs to the given graph. The array must not be used afterwards and must not be empty. @raise Invalid_argument if the array is empty *) val make_const : t -> const -> edge (** Constant edge, without sub-edges *) val fresh : t -> edge (** Fresh edge, without constant. It is equal to no other edge. *) module EdgeTbl : Hashtbl.S with type key = edge val pp : ?printed:unit EdgeTbl.t -> Buffer.t -> edge -> unit (** Print the edge on the buffer. @param printed: sub-edges already printed. *) end module type PARAM = sig type const val eq : const -> const -> bool val hash : const -> int val to_string : const -> string (* for printing *) end module Make(P : PARAM) = struct type const = P.const type edge = | Fresh of int | Const of const | Edge of edge array let rec eq e1 e2 = match e1, e2 with | Fresh _, Fresh _ -> e1 == e2 | Const c1, Const c2 -> P.eq c1 c2 | Edge a1, Edge a2 -> Array.length a1 = Array.length a2 && begin try for i = 0 to Array.length a1 - 1 do if not (eq (Array.unsafe_get a1 i) (Array.unsafe_get a2 i)) then raise Exit; done; true with Exit -> false end | _ -> false let rec hash e = match e with | Fresh i -> i | Const c -> P.hash c | Edge a -> let h = ref 0 in for i = 0 to Array.length a - 1 do h := max_int land (!h * 65599 + (hash (Array.unsafe_get a i))) done; !h (* hashtable on edges *) module EdgeTbl = Hashtbl.Make(struct type t = edge let equal = eq let hash = hash end) (* hashtable on edges * int *) module BackTbl = Hashtbl.Make(struct type t = edge * int let equal (e1, i1) (e2, i2) = i1 = i2 && eq e1 e2 let hash (e, i) = i * 65599 + hash e end) (** Hypergraph: set of edges. We map each edge to other edges that point to it (knowing which ones it points to is trivial) *) type t = { edges : unit EdgeTbl.t; backref : edge BackTbl.t; parent : t option; mutable count : int; (* used for Fresh nodes *) self : edge; } let arity e = match e with | Fresh _ | Const _ -> 0 | Edge a -> Array.length a let nth e i = match e with | Fresh _ | Const _ -> raise (Invalid_argument"HGraph.nth") | Edge a -> a.(i) let self g = g.self let make_graph ?parent () = let g = { parent; edges = EdgeTbl.create 15; backref = BackTbl.create 15; count = 1; self = Fresh 0; } in g (* add a backref from [e]'s sub-edges to [e] *) let _add_backrefs g e = match e with | Fresh _ | Const _ -> assert false | Edge a -> for i = 0 to Array.length a - 1 do BackTbl.add g.backref (Array.unsafe_get a i, i) e done let make_edge g sub = if Array.length sub = 0 then raise (Invalid_argument "HGraph.make_edge"); let e = Edge sub in (* add edge if not already present *) if not (EdgeTbl.mem g.edges e) then begin EdgeTbl.add g.edges e (); _add_backrefs g e end; e let make_const g c = let e = Const c in if not (EdgeTbl.mem g.edges e) then EdgeTbl.add g.edges e (); e let fresh g = let e = Fresh g.count in g.count <- g.count + 1; (* always new! *) EdgeTbl.add g.edges e (); e let pp ?(printed=EdgeTbl.create 7) buf e = let rec pp buf e = match e with | Fresh i -> Printf.bprintf buf "_e%d" i | Const c -> Buffer.add_string buf (P.to_string c) | Edge a -> if not (EdgeTbl.mem printed e) then begin EdgeTbl.add printed e (); Buffer.add_char buf '['; for i = 0 to Array.length a - 1 do if i > 0 then Buffer.add_char buf ' '; pp buf a.(i) done end in pp buf e end (** {2 Useful default} *) module DefaultParam = struct type const = | S of string | I of int type data = unit let eq c1 c2 = match c1, c2 with | S s1, S s2 -> s1 = s2 | I i1, I i2 -> i1 = i2 | _ -> false let hash = function | S s -> Hashtbl.hash s | I i -> i let to_string = function | S s -> s | I i -> string_of_int i let i i = I i let s s = S s end module Default = Make(DefaultParam)