(* Copyright (c) 2013, Simon Cruanes All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *) (** {1 Memoization caches} *) module type EQ = sig type t val equal : t -> t -> bool end module type HASH = sig include EQ val hash : t -> int end (** Signature of a cache for values *) module type S = sig type 'a t type key val create : int -> 'a t (** Create a new cache of the given size. *) val clear : 'a t -> unit (** Clear content of the cache *) val with_cache : 'a t -> (key -> 'a) -> key -> 'a (** Wrap the function with the cache. This means that [with_cache cache f x] always returns the same value as [f x], if [f x] returns, or raise the same exception. However, [f] may not be called if [x] is in the cache. *) val with_cache_rec : 'a t -> ((key -> 'a) -> key -> 'a) -> key -> 'a (** Partially apply the given function with a cached version of itself. It returns the specialized function. [with_cache_rec cache f] applies [f] to a cached version of [f], called [f'], so that [f' x = f f' x]. *) end (** Signature of a cache for pairs of values *) module type S2 = sig type 'a t type key1 type key2 val create : int -> 'a t (** Create a new cache of the given size. *) val clear : 'a t -> unit (** Clear content of the cache *) val with_cache : 'a t -> (key1 -> key2 -> 'a) -> key1 -> key2 -> 'a (** Wrap the function with the cache *) end (** {2 Dummy cache (no caching) *) module Dummy(X : sig type t end) = struct type 'a t = unit and key = X.t let create size = () let clear () = () let with_cache () f x = f x let with_cache_rec () f x = let rec f' x = f f' x in f' x end module Dummy2(X : sig type t end)(Y : sig type t end) = struct type 'a t = unit and key1 = X.t and key2 = Y.t let create size = () let clear () = () let with_cache () f x1 x2 = f x1 x2 end (** {2 Small linear cache} *) (** This cache stores (key,value) pairs in an array, that is traversed linearily. It is therefore only reasonable for small sizes (like 5). *) module Linear(X : EQ) = struct type 'a t = 'a bucket array and 'a bucket = Empty | Pair of key * 'a | PairRaise of key * exn and key = X.t let create size = assert (size >= 1); Array.create size Empty let clear cache = Array.fill cache 0 (Array.length cache) Empty (** Insert the bucket [b] into the cache *) let insert cache b = let n = Array.length cache in (* shift other values toward the end *) Array.blit cache 0 cache 1 (n-1); cache.(0) <- b (** Try to find [f x] in the cache, otherwise compute it and cache the result *) let with_cache cache f x = let n = Array.length cache in let rec search i = (* function that performs the lookup *) if i = n then begin (* cache miss *) try let y = f x in insert cache (Pair (x, y)); y with e -> insert cache (PairRaise (x, e)); raise e end else match cache.(i) with | Pair (x',y) when X.equal x x' -> y | PairRaise (x', e) when X.equal x x' -> raise e | _ -> search (i+1) in search 0 let with_cache_rec cache f x = (* make a recursive version of [f] that uses the cache *) let rec f' x = with_cache cache (fun x -> f f' x) x in f' x end module Linear2(X : EQ)(Y : EQ) = struct type 'a t = 'a bucket array and 'a bucket = Empty | Assoc of key1 * key2 * 'a | AssocRaise of key1 * key2 * exn and key1 = X.t and key2 = Y.t let create size = assert (size >= 1); Array.create size Empty let clear cache = Array.fill cache 0 (Array.length cache) Empty (** Insert the binding [b] into the cache *) let insert cache b = let n = Array.length cache in (* shift other values toward the end *) Array.blit cache 0 cache 1 (n-1); cache.(0) <- b (** Try to find [f x] in the cache, otherwise compute it and cache the result *) let with_cache cache f x1 x2 = let n = Array.length cache in let rec search i = (* function that performs the lookup *) if i = n then begin (* cache miss *) try let y = f x1 x2 in insert cache (Assoc (x1, x2, y)); y with e -> insert cache (AssocRaise (x1, x2, e)); raise e end else match cache.(i) with | Assoc (x1',x2',y) when X.equal x1 x1' && Y.equal x2 x2' -> y | AssocRaise (x1',x2',e) when X.equal x1 x1' && Y.equal x2 x2' -> raise e | _ -> search (i+1) in search 0 end (** {2 An imperative cache of fixed size for memoization of pairs} *) module Replacing(X : HASH) = struct type key = X.t (** A slot of the array contains a (key, value, true) if key->value is stored there (at index hash(key) % length), (null, null, false) otherwise. The first slot in the array contains the function used to produce the value upon a cache miss. *) type 'a t = 'a bucket array and 'a bucket = Empty | Assoc of key * 'a | AssocRaise of key * exn let create size = Array.create size Empty let clear c = Array.fill c 0 (Array.length c) Empty (** Try to find [f x] in the cache, otherwise compute it and cache the result *) let with_cache c f x = let i = (X.hash x) mod (Array.length c) in match c.(i) with | Assoc (x', y) when X.equal x x' -> y (* cache hit *) | AssocRaise (x', e) when X.equal x x' -> raise e (* cache hit *) | _ -> (* cache miss *) try let y = f x in c.(i) <- Assoc (x, y); y with e -> c.(i) <- AssocRaise (x, e); raise e let with_cache_rec cache f x = (* make a recursive version of [f] that uses the cache *) let rec f' x = with_cache cache (fun x -> f f' x) x in f' x end module Replacing2(X : HASH)(Y : HASH) = struct (** A slot of the array contains a (key, value, true) if key->value is stored there (at index hash(key) % length), (null, null, false) otherwise. The first slot in the array contains the function used to produce the value upon a cache miss. *) type 'a t = 'a bucket array and 'a bucket = Empty | Assoc of key1 * key2 * 'a | AssocRaise of key1 * key2 * exn and key1 = X.t and key2 = Y.t let create size = Array.create size Empty let clear c = Array.fill c 0 (Array.length c) Empty let with_cache c f x1 x2 = let i = (((X.hash x1 + 17) lxor Y.hash x2) mod Array.length c) in match c.(i) with | Assoc (x1', x2', y) when X.equal x1 x1' && Y.equal x2 x2' -> y (* cache hit *) | AssocRaise (x1', x2', e) when X.equal x1 x1' && Y.equal x2 x2' -> raise e (* cache hit *) | _ -> (* cache miss *) try let y = f x1 x2 in c.(i) <- Assoc (x1, x2, y); y with e -> c.(i) <- AssocRaise (x1, x2, e); raise e end (** {2 Hashtables with Least Recently Used eviction policy *) (* TODO: handle exceptions *) module LRU(X : HASH) = struct type key = X.t module H = Hashtbl.Make(X) type 'a t = { table : 'a node H.t; (* hashtable key -> node *) first : 'a node; (* dummy node for the entry of the list *) mutable len : int; (* number of entries *) size : int; (* max size *) } and 'a node = { mutable key : key; mutable value : 'a; mutable next : 'a node; mutable prev : 'a node; } (** Meta data for the value *) let create size = let rec first = { key = Obj.magic 0; value = Obj.magic 0; next=first; prev=first; } in { table = H.create size; len = 0; size; first; } (** Clear the content of the cache *) let clear c = c.len <- 0; H.clear c.table; c.first.next <- c.first; c.first.prev <- c.first; () (** Find an element, or raise Not_found *) let find c x = let n = H.find c.table x in assert (X.equal n.key x); n.value (** Replace least recently used element of [c] by x->y *) let replace c x y = let n = c.first.next in (* remove old element *) H.remove c.table n.key; (* insertion in hashtable *) H.add c.table x n; (* re-use the node for x,y *) n.key <- x; n.value <- y; (* remove from front of queue *) n.next.prev <- c.first; c.first.next <- n.next; (* insert at back of queue *) let last = c.first.prev in last.next <- n; c.first.prev <- n; n.next <- c.first; n.prev <- last; () (** Insert x->y in the cache, increasing its entry count *) let insert c x y = c.len <- c.len + 1; let n = { key = x; value = y; next = c.first; prev = c.first.prev; } in (* insertion in hashtable *) H.add c.table x n; (* insertion at back of queue *) c.first.prev.next <- n; c.first.prev <- n; () (** Try to find [f x] in the cache, otherwise compute it and cache the result *) let with_cache c f x = try find c x with Not_found -> let y = f x in (if c.len = c.size then replace c x y else insert c x y); y let with_cache_rec cache f x = (* make a recursive version of [f] that uses the cache *) let rec f' x = with_cache cache (fun x -> f f' x) x in f' x end