(** Generic benchs *) module B = Benchmark let (@>) = B.Tree.(@>) let (@>>) = B.Tree.(@>>) let (@>>>) = B.Tree.(@>>>) let (|>) = CCFun.(|>) let app_int f n = string_of_int n @> lazy (f n) let app_ints f l = B.Tree.concat (List.map (app_int f) l) (* composition *) let (%%) f g x = f (g x) module L = struct (* FLAT MAP *) let f_ x = if x mod 10 = 0 then [] else if x mod 5 = 1 then [x;x+1] else [x;x+1;x+2;x+3] let bench_flat_map ?(time=2) n = let l = CCList.(1 -- n) in let flatten_map_ l = List.flatten (CCList.map f_ l) and flatten_ccmap_ l = List.flatten (List.map f_ l) in B.throughputN time [ "flat_map", CCList.flat_map f_, l ; "flatten o CCList.map", flatten_ccmap_, l ; "flatten o map", flatten_map_, l ] (* APPEND *) let append_ f (l1, l2, l3) = ignore (f (f l1 l2) l3) let bench_append ?(time=2) n = let l1 = CCList.(1 -- n) in let l2 = CCList.(n+1 -- 2*n) in let l3 = CCList.(2*n+1 -- 3*n) in let arg = l1, l2, l3 in B.throughputN time [ "CCList.append", append_ CCList.append, arg ; "List.append", append_ List.append, arg ] (* FLATTEN *) let bench_flatten ?(time=2) n = let fold_right_append_ l = List.fold_right List.append l [] and cc_fold_right_append_ l = CCList.fold_right CCList.append l [] in let l = CCList.Idx.mapi (fun i x -> CCList.(x -- (x+ min i 100))) CCList.(1 -- n) in B.throughputN time [ "CCList.flatten", CCList.flatten, l ; "List.flatten", List.flatten, l ; "fold_right append", fold_right_append_, l ; "CCList.(fold_right append)", cc_fold_right_append_, l ] (* MAIN *) let () = B.Tree.register ( "list" @>>> [ "flat_map" @>> B.Tree.concat [ app_int (bench_flat_map ~time:2) 100 ; app_int (bench_flat_map ~time:2) 10_000 ; app_int (bench_flat_map ~time:4) 100_000] ; "flatten" @>> B.Tree.concat [ app_int (bench_flatten ~time:2) 100 ; app_int (bench_flatten ~time:2) 10_000 ; app_int (bench_flatten ~time:4) 100_000] ; "append" @>> B.Tree.concat [ app_int (bench_append ~time:2) 100 ; app_int (bench_append ~time:2) 10_000 ; app_int (bench_append ~time:4) 100_000] ] ) end module Vec = struct let f x = x+1 let map_push_ f v = let v' = CCVector.create () in CCVector.iter (fun x -> CCVector.push v' (f x)) v; v' let map_push_size_ f v = let v' = CCVector.create_with ~capacity:(CCVector.length v) 0 in CCVector.iter (fun x -> CCVector.push v' (f x)) v; v' let bench_map n = let v = CCVector.init n (fun x->x) in B.throughputN 2 [ "map", CCVector.map f, v ; "map_push", map_push_ f, v ; "map_push_cap", map_push_size_ f, v ] let try_append_ app n v2 () = let v1 = CCVector.init n (fun x->x) in app v1 v2; assert (CCVector.length v1 = 2*n); () let append_naive_ v1 v2 = CCVector.iter (fun x -> CCVector.push v1 x) v2 let bench_append n = let v2 = CCVector.init n (fun x->n+x) in B.throughputN 2 [ "append", try_append_ CCVector.append n v2, () ; "append_naive", try_append_ append_naive_ n v2, () ] let () = B.Tree.register ( "vector" @>>> [ "map" @>> app_ints bench_map [100; 10_000; 100_000] ; "append" @>> app_ints bench_append [100; 10_000; 50_000] ] ) end module Cache = struct module C = CCCache let make_fib c = let f = C.with_cache_rec c (fun fib n -> match n with | 0 -> 0 | 1 -> 1 | 2 -> 1 | n -> fib (n-1) + fib (n-2) ) in fun x -> C.clear c; f x let bench_fib n = let l = [ "replacing_fib (128)", make_fib (C.replacing 128), n ; "LRU_fib (128)", make_fib (C.lru 128), n ; "replacing_fib (16)", make_fib (C.replacing 16), n ; "LRU_fib (16)", make_fib (C.lru 16), n ; "unbounded", make_fib (C.unbounded 32), n ] in let l = if n <= 20 then [ "linear_fib (5)", make_fib (C.linear 5), n ; "linear_fib (32)", make_fib (C.linear 32), n ; "dummy_fib", make_fib C.dummy, n ] @ l else l in B.throughputN 3 l let () = B.Tree.register ( "cache" @>>> [ "fib" @>> app_ints bench_fib [10; 20; 100; 200; 1_000;] ] ) end module Tbl = struct module IHashtbl = Hashtbl.Make(struct type t = int let equal i j = i = j let hash i = i end) module IPersistentHashtbl = CCPersistentHashtbl.Make(struct type t = int let equal i j = i = j let hash i = i end) module IMap = Map.Make(struct type t = int let compare i j = i - j end) module ICCHashtbl = CCFlatHashtbl.Make(struct type t = int let equal i j = i = j let hash i = i end) module IHashTrie = CCHashTrie.Make(struct type t = int let equal (i:int) j = i=j let hash i = i land max_int end) module IHAMT = Hamt.Make(Hamt.StdConfig)(CCInt) let phashtbl_add n = let h = PHashtbl.create 50 in for i = n downto 0 do PHashtbl.add h i i; done; h let hashtbl_add n = let h = Hashtbl.create 50 in for i = n downto 0 do Hashtbl.add h i i; done; h let ihashtbl_add n = let h = IHashtbl.create 50 in for i = n downto 0 do IHashtbl.add h i i; done; h let ipersistenthashtbl_add n = let h = ref (IPersistentHashtbl.create 32) in for i = n downto 0 do h := IPersistentHashtbl.replace !h i i; done; !h let imap_add n = let h = ref IMap.empty in for i = n downto 0 do h := IMap.add i i !h; done; !h let intmap_add n = let h = ref CCIntMap.empty in for i = n downto 0 do h := CCIntMap.add i i !h; done; !h let hashtrie_add n = let h = ref IHashTrie.empty in for i = n downto 0 do h := IHashTrie.add i i !h; done; !h let hamt_add n = let h = ref IHAMT.empty in for i = n downto 0 do h := IHAMT.add i i !h; done; !h let icchashtbl_add n = let h = ICCHashtbl.create 50 in for i = n downto 0 do ICCHashtbl.add h i i; done; h let bench_maps1 n = B.throughputN 3 ["phashtbl_add", (fun n -> ignore (phashtbl_add n)), n; "hashtbl_add", (fun n -> ignore (hashtbl_add n)), n; "ihashtbl_add", (fun n -> ignore (ihashtbl_add n)), n; "ipersistenthashtbl_add", (fun n -> ignore (ipersistenthashtbl_add n)), n; "imap_add", (fun n -> ignore (imap_add n)), n; "intmap_add", (fun n -> ignore (intmap_add n)), n; "ccflathashtbl_add", (fun n -> ignore (icchashtbl_add n)), n; "cchashtrie_add", (fun n -> ignore (hashtrie_add n)), n; "hamt_add", (fun n -> ignore (hamt_add n)), n; ] let phashtbl_replace n = let h = PHashtbl.create 50 in for i = 0 to n do PHashtbl.replace h i i; done; for i = n downto 0 do PHashtbl.replace h i i; done; h let hashtbl_replace n = let h = Hashtbl.create 50 in for i = 0 to n do Hashtbl.replace h i i; done; for i = n downto 0 do Hashtbl.replace h i i; done; h let ihashtbl_replace n = let h = IHashtbl.create 50 in for i = 0 to n do IHashtbl.replace h i i; done; for i = n downto 0 do IHashtbl.replace h i i; done; h let ipersistenthashtbl_replace n = let h = ref (IPersistentHashtbl.create 32) in for i = 0 to n do h := IPersistentHashtbl.replace !h i i; done; for i = n downto 0 do h := IPersistentHashtbl.replace !h i i; done; !h let imap_replace n = let h = ref IMap.empty in for i = 0 to n do h := IMap.add i i !h; done; for i = n downto 0 do h := IMap.add i i !h; done; !h let intmap_replace n = let h = ref CCIntMap.empty in for i = 0 to n do h := CCIntMap.add i i !h; done; for i = n downto 0 do h := CCIntMap.add i i !h; done; !h let hashtrie_replace n = let h = ref IHashTrie.empty in for i = 0 to n do h := IHashTrie.add i i !h; done; for i = n downto 0 do h := IHashTrie.add i i !h; done; !h let hamt_replace n = let h = ref IHAMT.empty in for i = 0 to n do h := IHAMT.add i i !h; done; for i = n downto 0 do h := IHAMT.add i i !h; done; !h let icchashtbl_replace n = let h = ICCHashtbl.create 50 in for i = 0 to n do ICCHashtbl.add h i i; done; for i = n downto 0 do ICCHashtbl.add h i i; done; h let bench_maps2 n = B.throughputN 3 ["phashtbl_replace", (fun n -> ignore (phashtbl_replace n)), n; "hashtbl_replace", (fun n -> ignore (hashtbl_replace n)), n; "ihashtbl_replace", (fun n -> ignore (ihashtbl_replace n)), n; "ipersistenthashtbl_replace", (fun n -> ignore (ipersistenthashtbl_replace n)), n; "imap_replace", (fun n -> ignore (imap_replace n)), n; "intmap_replace", (fun n -> ignore (intmap_replace n)), n; "ccflathashtbl_replace", (fun n -> ignore (icchashtbl_replace n)), n; "hashtrie_replace", (fun n -> ignore (hashtrie_replace n)), n; "hamt_replace", (fun n -> ignore (hamt_replace n)), n; ] let phashtbl_find h = fun n -> for i = 0 to n-1 do ignore (PHashtbl.find h i); done let hashtbl_find h = fun n -> for i = 0 to n-1 do ignore (Hashtbl.find h i); done let ihashtbl_find h = fun n -> for i = 0 to n-1 do ignore (IHashtbl.find h i); done let ipersistenthashtbl_find h = fun n -> for i = 0 to n-1 do ignore (IPersistentHashtbl.find h i); done let array_find a = fun n -> for i = 0 to n-1 do ignore (Array.get a i); done let persistent_array_find a = fun n -> for i = 0 to n-1 do ignore (CCPersistentArray.get a i); done let imap_find m = fun n -> for i = 0 to n-1 do ignore (IMap.find i m); done let intmap_find m = fun n -> for i = 0 to n-1 do ignore (CCIntMap.find i m); done let hashtrie_find m = fun n -> for i = 0 to n-1 do ignore (IHashTrie.get_exn i m); done let hamt_find m = fun n -> for i = 0 to n-1 do ignore (IHAMT.find_exn i m); done let icchashtbl_find m = fun n -> for i = 0 to n-1 do ignore (ICCHashtbl.get_exn i m); done let bench_maps3 n = let h = phashtbl_add n in let h' = hashtbl_add n in let h'' = ihashtbl_add n in let h''''' = ipersistenthashtbl_add n in let a = Array.init n string_of_int in let pa = CCPersistentArray.init n string_of_int in let m = imap_add n in let m' = intmap_add n in let h'''''' = icchashtbl_add n in let ht = hashtrie_add n in let hamt = hamt_add n in B.throughputN 3 [ "phashtbl_find", (fun () -> phashtbl_find h n), (); "hashtbl_find", (fun () -> hashtbl_find h' n), (); "ihashtbl_find", (fun () -> ihashtbl_find h'' n), (); "ipersistenthashtbl_find", (fun () -> ipersistenthashtbl_find h''''' n), (); "array_find", (fun () -> array_find a n), (); "persistent_array_find", (fun () -> persistent_array_find pa n), (); "imap_find", (fun () -> imap_find m n), (); "intmap_find", (fun () -> intmap_find m' n), (); "ccflathashtbl_find", (fun () -> icchashtbl_find h'''''' n), (); "hashtrie_find", (fun () -> hashtrie_find ht n), (); "hamt_find", (fun () -> hamt_find hamt n), (); ] let () = B.Tree.register ( "tbl" @>>> [ "add" @>> app_ints bench_maps1 [10; 100; 1_000; 10_000;] ; "replace" @>> app_ints bench_maps2 [10; 100; 1_000; 10_000] ; "find" @>> app_ints bench_maps3 [10; 20; 100; 1_000; 10_000] ]) end module Iter = struct (** {2 Sequence/Gen} *) let bench_fold n = let seq () = Sequence.fold (+) 0 Sequence.(0 --n) in let gen () = Gen.fold (+) 0 Gen.(0 -- n) in let klist () = CCKList.fold (+) 0 CCKList.(0 -- n) in B.throughputN 3 [ "sequence.fold", seq, (); "gen.fold", gen, (); "klist.fold", klist, (); ] let bench_flat_map n = let seq () = Sequence.( 0 -- n |> flat_map (fun x -> x-- (x+10)) |> fold (+) 0 ) and gen () = Gen.( 0 -- n |> flat_map (fun x -> x-- (x+10)) |> fold (+) 0 ) and klist () = CCKList.( 0 -- n |> flat_map (fun x -> x-- (x+10)) |> fold (+) 0 ) in B.throughputN 3 [ "sequence.flat_map", seq, (); "gen.flat_map", gen, (); "klist.flat_map", klist, (); ] let bench_iter n = let seq () = let i = ref 2 in Sequence.( 1 -- n |> iter (fun x -> i := !i * x) ) and gen () = let i = ref 2 in Gen.( 1 -- n |> iter (fun x -> i := !i * x) ) and klist () = let i = ref 2 in CCKList.( 1 -- n |> iter (fun x -> i := !i * x) ) in B.throughputN 3 [ "sequence.iter", seq, (); "gen.iter", gen, (); "klist.iter", klist, (); ] let () = B.Tree.register ( "iter" @>>> [ "fold" @>> app_ints bench_fold [100; 1_000; 10_000; 1_000_000] ; "flat_map" @>> app_ints bench_flat_map [1_000; 10_000] ; "iter" @>> app_ints bench_iter [1_000; 10_000] ]) end module Batch = struct (** benchmark CCBatch *) open Containers_advanced module type COLL = sig val name : string include CCBatch.COLLECTION val doubleton : 'a -> 'a -> 'a t val (--) : int -> int -> int t val equal : int t -> int t -> bool end module Make(C : COLL) = struct let f1 x = x mod 2 = 0 let f2 x = -x let f3 x = C.doubleton x (x+1) let f4 x = -x let collect a = C.fold (+) 0 a let naive a = let a = C.filter f1 a in let a = C.flat_map f3 a in let a = C.filter f1 a in let a = C.map f2 a in let a = C.flat_map f3 a in let a = C.map f4 a in ignore (collect a); a module BA = CCBatch.Make(C) let ops = BA.(filter f1 >>> flat_map f3 >>> filter f1 >>> map f2 >>> flat_map f3 >>> map f4) let batch a = let a = BA.apply ops a in ignore (collect a); a let bench_for ~time n = let a = C.(0 -- n) in (* debug CCPrint.printf "naive: %a\n" (CCArray.pp CCInt.pp) (naive a); CCPrint.printf "simple: %a\n" (CCArray.pp CCInt.pp) (batch_simple a); CCPrint.printf "batch: %a\n" (CCArray.pp CCInt.pp) (batch a); *) assert (C.equal (batch a) (naive a)); B.throughputN time [ C.name ^ "_naive", naive, a ; C.name ^ "_batch", batch, a ] let bench = B.( C.name @>> B.Tree.concat [ app_int (bench_for ~time:1) 100 ; app_int (bench_for ~time:4) 100_000 ; app_int (bench_for ~time:4) 1_000_000 ]) end module BenchArray = Make(struct include CCArray let name = "array" let equal a b = a=b let doubleton x y = [| x; y |] let fold = Array.fold_left end) module BenchList = Make(struct include CCList let name = "list" let equal a b = a=b let doubleton x y = [ x; y ] let fold = List.fold_left end) module BenchKList = Make(struct include CCKList let name = "klist" let equal a b = equal (=) a b let doubleton x y = CCKList.of_list [ x; y ] end) let () = B.Tree.register ( "batch" @>> B.Tree.concat [ BenchKList.bench ; BenchArray.bench ; BenchList.bench ]) end module Deque = struct module type DEQUE = sig type 'a t val create : unit -> 'a t val of_seq : 'a Sequence.t -> 'a t val iter : ('a -> unit) -> 'a t -> unit val push_front : 'a t -> 'a -> unit val push_back : 'a t -> 'a -> unit val is_empty : 'a t -> bool val take_front : 'a t -> 'a val take_back : 'a t -> 'a val append_back : into:'a t -> 'a t -> unit val length : _ t -> int end module Base : DEQUE = struct type 'a elt = { content : 'a; mutable prev : 'a elt; mutable next : 'a elt; } (** A cell holding a single element *) and 'a t = 'a elt option ref (** The deque, a double linked list of cells *) exception Empty let create () = ref None let is_empty d = match !d with | None -> true | Some _ -> false let push_front d x = match !d with | None -> let rec elt = { content = x; prev = elt; next = elt; } in d := Some elt | Some first -> let elt = { content = x; prev = first.prev; next=first; } in first.prev.next <- elt; first.prev <- elt; d := Some elt let push_back d x = match !d with | None -> let rec elt = { content = x; prev = elt; next = elt; } in d := Some elt | Some first -> let elt = { content = x; next=first; prev=first.prev; } in first.prev.next <- elt; first.prev <- elt let take_back d = match !d with | None -> raise Empty | Some first when first == first.prev -> (* only one element *) d := None; first.content | Some first -> let elt = first.prev in elt.prev.next <- first; first.prev <- elt.prev; (* remove [first.prev] from list *) elt.content let take_front d = match !d with | None -> raise Empty | Some first when first == first.prev -> (* only one element *) d := None; first.content | Some first -> first.prev.next <- first.next; (* remove [first] from list *) first.next.prev <- first.prev; d := Some first.next; first.content let iter f d = match !d with | None -> () | Some first -> let rec iter elt = f elt.content; if elt.next != first then iter elt.next in iter first let of_seq seq = let q =create () in seq (push_back q); q let append_back ~into q = iter (push_back into) q let length q = let n = ref 0 in iter (fun _ -> incr n) q; !n end module FQueue : DEQUE = struct type 'a t = 'a CCFQueue.t ref let create () = ref CCFQueue.empty let of_seq s = ref (CCFQueue.of_seq s) let iter f q = CCFQueue.iter f !q let push_front q x = q:= CCFQueue.cons x !q let push_back q x = q:= CCFQueue.snoc !q x let is_empty q = CCFQueue.is_empty !q let take_front q = let x, q' = CCFQueue.take_front_exn !q in q := q'; x let take_back q = let q', x = CCFQueue.take_back_exn !q in q := q'; x let append_back ~into q = into := CCFQueue.append !into !q let length q = CCFQueue.size !q end let base = (module Base : DEQUE) let cur = (module CCDeque : DEQUE) let fqueue = (module FQueue : DEQUE) let bench_iter n = let seq = Sequence.(1 -- n) in let make (module D : DEQUE) = let q = D.of_seq seq in fun () -> let n = ref 0 in D.iter (fun _ -> incr n) q; () in B.throughputN 3 [ "base", make base, () ; "cur", make cur, () ; "fqueue", make fqueue, () ] let bench_push_front n = let make (module D : DEQUE) () = let q = D.create() in for i=0 to n do D.push_front q i done in B.throughputN 3 [ "base", make base, () ; "cur", make cur, () ; "fqueue", make fqueue, () ] let bench_push_back n = let make (module D : DEQUE) = let q = D.create() in fun () -> for i=0 to n do D.push_back q i done in B.throughputN 3 [ "base", make base, () ; "cur", make cur, () ; "fqueue", make fqueue, () ] let bench_append n = let seq = Sequence.(1 -- n) in let make (module D :DEQUE) = let q1 = D.of_seq seq in let q2 = D.of_seq seq in fun () -> D.append_back ~into:q1 q2 in B.throughputN 3 [ "base", make base, () ; "cur", make cur, () ; "fqueue", make fqueue, () ] let bench_length n = let seq = Sequence.(1--n) in let make (module D:DEQUE) = let q = D.of_seq seq in fun () -> ignore (D.length q) in B.throughputN 3 [ "base", make base, () ; "cur", make cur, () ; "fqueue", make fqueue, () ] let () = B.Tree.register ( "deque" @>>> [ "iter" @>> app_ints bench_iter [100; 1_000; 100_000] ; "push_front" @>> app_ints bench_push_front [100; 1_000; 100_000] ; "push_back" @>> app_ints bench_push_back [100; 1_000; 100_000] ; "append_back" @>> app_ints bench_append [100; 1_000; 100_000] ; "length" @>> app_ints bench_length [100; 1_000] ] ) end module Thread = struct module Q = CCThread.Queue module type TAKE_PUSH = sig val take : 'a Q.t -> 'a val push : 'a Q.t -> 'a -> unit val take_list: 'a Q.t -> int -> 'a list val push_list : 'a Q.t -> 'a list -> unit end let cur = (module Q : TAKE_PUSH) let naive = let module Q = struct let take = Q.take let push = Q.push let push_list q l = List.iter (push q) l let rec take_list q n = if n=0 then [] else let x = take q in x :: take_list q (n-1) end in (module Q : TAKE_PUSH) (* n senders, n receivers *) let bench_queue ~size ~senders ~receivers n = let make (module TP : TAKE_PUSH) = let l = CCList.(1 -- n) in fun () -> let q = Q.create size in let res = CCLock.create 0 in let expected_res = 2 * senders * Sequence.(1 -- n |> fold (+) 0) in let a_senders = CCThread.Arr.spawn senders (fun _ -> TP.push_list q l; TP.push_list q l ) and a_receivers = CCThread.Arr.spawn receivers (fun _ -> let l1 = TP.take_list q n in let l2 = TP.take_list q n in let n = List.fold_left (+) 0 l1 + List.fold_left (+) 0 l2 in CCLock.update res ((+) n); () ) in CCThread.Arr.join a_senders; CCThread.Arr.join a_receivers; assert (expected_res = CCLock.get res); () in B.throughputN 3 [ "cur", make cur, () ; "naive", make naive, () ] let () = B.Tree.register ( let take_push = CCList.map (fun (size,senders,receivers) -> Printf.sprintf "queue.take/push (size=%d,senders=%d,receivers=%d)" size senders receivers @>> app_ints (bench_queue ~size ~senders ~receivers) [100; 1_000] ) [ 2, 3, 3 ; 5, 3, 3 ; 2, 10, 10 ; 5, 10, 10 ; 20, 10, 10 ] in "thread" @>>> ( take_push @ [] ) ) end let () = B.Tree.run_global ()