(** Generic benchs *) module B = Benchmark let (@>) = B.Tree.(@>) let (@>>) = B.Tree.(@>>) let (@>>>) = B.Tree.(@>>>) let (|>) = CCFun.(|>) let app_int f n = string_of_int n @> lazy (f n) let app_ints f l = B.Tree.concat (List.map (app_int f) l) (* for benchmark *) let repeat = 3 (* composition *) let (%%) f g x = f (g x) module L = struct (* MAP *) let f_ x = x+1 let bench_map ?(time=2) n = let l = CCList.(1 -- n) in let ral = CCRAL.of_list l in let map_naive () = ignore (try List.map f_ l with Stack_overflow -> []) and map_tailrec () = ignore (List.rev (List.rev_map f_ l)) and ccmap () = ignore (CCList.map f_ l) and ralmap () = ignore (CCRAL.map ~f:f_ ral) in B.throughputN time ~repeat [ "List.map", map_naive, () ; "List.rev_map o rev", map_tailrec, () ; "CCList.map", ccmap, () ; "CCRAL.map", ralmap, () ] (* FLAT MAP *) let f_ x = if x mod 10 = 0 then [] else if x mod 5 = 1 then [x;x+1] else [x;x+1;x+2;x+3] let bench_flat_map ?(time=2) n = let l = CCList.(1 -- n) in let flatten_map_ l = List.flatten (CCList.map f_ l) and flatten_ccmap_ l = List.flatten (List.map f_ l) in B.throughputN time ~repeat [ "flat_map", CCList.flat_map f_, l ; "flatten o CCList.map", flatten_ccmap_, l ; "flatten o map", flatten_map_, l ] (* APPEND *) let append_ f (l1, l2, l3) = ignore (f (f l1 l2) l3) let bench_append ?(time=2) n = let l1 = CCList.(1 -- n) in let l2 = CCList.(n+1 -- 2*n) in let l3 = CCList.(2*n+1 -- 3*n) in let arg = l1, l2, l3 in B.throughputN time ~repeat [ "CCList.append", append_ CCList.append, arg ; "List.append", append_ List.append, arg ] (* FLATTEN *) let bench_flatten ?(time=2) n = let fold_right_append_ l = List.fold_right List.append l [] and cc_fold_right_append_ l = CCList.fold_right CCList.append l [] in let l = CCList.Idx.mapi (fun i x -> CCList.(x -- (x+ min i 100))) CCList.(1 -- n) in B.throughputN time ~repeat [ "CCList.flatten", CCList.flatten, l ; "List.flatten", List.flatten, l ; "fold_right append", fold_right_append_, l ; "CCList.(fold_right append)", cc_fold_right_append_, l ] (* MAIN *) let () = B.Tree.register ( "list" @>>> [ "map" @>> B.Tree.concat [ app_int (bench_map ~time:2) 100 ; app_int (bench_map ~time:2) 10_000 ; app_int (bench_map ~time:4) 100_000 ; app_int (bench_map ~time:4) 500_000 ] ; "flat_map" @>> B.Tree.concat [ app_int (bench_flat_map ~time:2) 100 ; app_int (bench_flat_map ~time:2) 10_000 ; app_int (bench_flat_map ~time:4) 100_000] ; "flatten" @>> B.Tree.concat [ app_int (bench_flatten ~time:2) 100 ; app_int (bench_flatten ~time:2) 10_000 ; app_int (bench_flatten ~time:4) 100_000] ; "append" @>> B.Tree.concat [ app_int (bench_append ~time:2) 100 ; app_int (bench_append ~time:2) 10_000 ; app_int (bench_append ~time:4) 100_000] ] ) end module Arr = struct let rand = Random.State.make [| 1;2;3;4 |] let mk_arr n = Array.init n (fun _ -> Random.State.int rand 5_000) module IntArr = struct type elt=int type t = int array let get = Array.get let set = Array.set let length = Array.length end let sort_ccarray a = CCArray.sort_generic (module IntArr) ~cmp:CCInt.compare a let sort_std a = Array.sort CCInt.compare a (* helper, to apply a sort function over a list of arrays *) let app_list sort l = List.iter (fun a -> let a = Array.copy a in sort a ) l let bench_sort ?(time=2) n = let a1 = mk_arr n in let a2 = mk_arr n in let a3 = mk_arr n in B.throughputN time ~repeat [ "std", app_list sort_std, [a1;a2;a3] ; "ccarray.sort_gen", app_list sort_ccarray, [a1;a2;a3] ] let () = B.Tree.register ("array" @>>> [ "sort" @>> app_ints (bench_sort ?time:None) [100; 1000; 10_000; 50_000; 100_000; 500_000] ] ) end module Vec = struct let f x = x+1 let map_push_ f v = let v' = CCVector.create () in CCVector.iter (fun x -> CCVector.push v' (f x)) v; v' let map_push_size_ f v = let v' = CCVector.create_with ~capacity:(CCVector.length v) 0 in CCVector.iter (fun x -> CCVector.push v' (f x)) v; v' let bench_map n = let v = CCVector.init n (fun x->x) in B.throughputN 2 ~repeat [ "map", CCVector.map f, v ; "map_push", map_push_ f, v ; "map_push_cap", map_push_size_ f, v ] let try_append_ app n v2 () = let v1 = CCVector.init n (fun x->x) in app v1 v2; assert (CCVector.length v1 = 2*n); () let append_naive_ v1 v2 = CCVector.iter (fun x -> CCVector.push v1 x) v2 let bench_append n = let v2 = CCVector.init n (fun x->n+x) in B.throughputN 2 ~repeat [ "append", try_append_ CCVector.append n v2, () ; "append_naive", try_append_ append_naive_ n v2, () ] let () = B.Tree.register ( "vector" @>>> [ "map" @>> app_ints bench_map [100; 10_000; 100_000] ; "append" @>> app_ints bench_append [100; 10_000; 50_000] ] ) end module Cache = struct module C = CCCache let make_fib c = let f = C.with_cache_rec c (fun fib n -> match n with | 0 -> 0 | 1 -> 1 | 2 -> 1 | n -> fib (n-1) + fib (n-2) ) in fun x -> C.clear c; f x let bench_fib n = let l = [ "replacing_fib (128)", make_fib (C.replacing 128), n ; "LRU_fib (128)", make_fib (C.lru 128), n ; "replacing_fib (16)", make_fib (C.replacing 16), n ; "LRU_fib (16)", make_fib (C.lru 16), n ; "unbounded", make_fib (C.unbounded 32), n ] in let l = if n <= 20 then [ "linear_fib (5)", make_fib (C.linear 5), n ; "linear_fib (32)", make_fib (C.linear 32), n ; "dummy_fib", make_fib C.dummy, n ] @ l else l in B.throughputN 3 l ~repeat let () = B.Tree.register ( "cache" @>>> [ "fib" @>> app_ints bench_fib [10; 20; 100; 200; 1_000;] ] ) end module Tbl = struct (** Signature for mutable map *) module type MUT = sig type key type 'a t val name : string val find : 'a t -> key -> 'a val create : int -> 'a t val add : 'a t -> key -> 'a -> unit val replace : 'a t -> key -> 'a -> unit end module type INT_MUT = MUT with type key = int module type STRING_MUT = MUT with type key = string module type IMMUT = sig type key type 'a t val name : string val empty : 'a t val find : key -> 'a t -> 'a val add : key -> 'a -> 'a t -> 'a t end module type INT_IMMUT = IMMUT with type key = int module MUT_OF_IMMUT(T : IMMUT) : MUT with type key = T.key and type 'a t = 'a T.t ref = struct type key = T.key type 'a t = 'a T.t ref let name = T.name let create _ = ref T.empty let find m k = T.find k !m let add m k v = m := T.add k v !m let replace = add end module type KEY = sig type t val equal : t -> t -> bool val hash : t -> int val compare : t -> t -> int end type _ key_type = | Int : int key_type | Str : string key_type let arg_make : type a. a key_type -> (module KEY with type t = a) * string = function | Int -> (module CCInt), "int" | Str -> let module S = struct type t = string include CCString end in (module S : KEY with type t = string), "string" let sprintf = Printf.sprintf let hashtbl_make : type a. a key_type -> (module MUT with type key = a) = fun key -> let (module Key), name = arg_make key in let module T = struct let name = sprintf "hashtbl(%s)" name include Hashtbl.Make(Key) end in (module T) let persistent_hashtbl_ref : type a. a key_type -> (module MUT with type key = a) = fun key -> let (module Key), name = arg_make key in let module T = Ref_impl.PersistentHashtbl(Key) in let module U = struct type key = a type 'a t = 'a T.t ref let name = sprintf "persistent_tbl_old(%s)" name let create _ = ref (T.empty ()) let find m k = T.find !m k let add m k v = m := T.replace !m k v let replace = add end in (module U) let persistent_hashtbl : type a. a key_type -> (module MUT with type key = a) = fun key -> let (module Key), name = arg_make key in let module T = CCPersistentHashtbl.Make(Key) in let module U = struct type key = a type 'a t = 'a T.t ref let name = sprintf "persistent_tbl(%s)" name let create _ = ref (T.empty ()) let find m k = T.find !m k let add m k v = m := T.replace !m k v let replace = add end in (module U) let hashtbl = let module T = struct type key = int type 'a t = (int, 'a) Hashtbl.t let name = "hashtbl" let create i = Hashtbl.create i let find = Hashtbl.find let add = Hashtbl.add let replace = Hashtbl.replace end in (module T : INT_MUT) let map : type a. a key_type -> (module MUT with type key = a) = fun k -> let (module K), name = arg_make k in let module T = struct let name = sprintf "map(%s)" name include Map.Make(K) end in let module U = MUT_OF_IMMUT(T) in (module U : MUT with type key = a) let wbt : type a. a key_type -> (module MUT with type key = a) = fun k -> let (module K), name = arg_make k in let module T = struct let name = sprintf "ccwbt(%s)" name include CCWBTree.Make(K) let find = get_exn end in let module U = MUT_OF_IMMUT(T) in (module U : MUT with type key = a) let flat_hashtbl = let module T = CCFlatHashtbl.Make(CCInt) in let module U = struct type key = int type 'a t = 'a T.t let name = "ccflat_hashtbl" let create = T.create let find = T.find_exn let add = T.add let replace = T.add end in (module U : INT_MUT) let trie : (module MUT with type key = string) = let module T = struct let name = "trie(string)" include CCTrie.String let find = find_exn end in let module U = MUT_OF_IMMUT(T) in (module U) let hashtrie : type a. a key_type -> (module MUT with type key = a) = fun k -> let (module K), name = arg_make k in let module T = struct let name = sprintf "cchashtrie(%s)" name include CCHashTrie.Make(K) let find = get_exn end in let module U = MUT_OF_IMMUT(T) in (module U) let hashtrie_mut : type a. a key_type -> (module MUT with type key = a) = fun k -> let (module K), name = arg_make k in let module T = struct let name = sprintf "cchashtrie_mut(%s)" name type key = K.t module M = CCHashTrie.Make(K) type 'a t = { id: CCHashTrie.Transient.t; mutable map: 'a M.t; } let create _ = { id=CCHashTrie.Transient.create(); map=M.empty} let find m k = M.get_exn k m.map let add m k v = m.map <- M.add_mut ~id:m.id k v m.map let replace = add end in (module T) let hamt : type a. a key_type -> (module MUT with type key = a) = fun k -> let (module K), name = arg_make k in let module T = struct let name = sprintf "hamt(%s)" name include Hamt.Make(Hamt.StdConfig)(K) let find = find_exn end in let module U = MUT_OF_IMMUT(T) in (module U) let modules_int = [ hashtbl_make Int ; hashtbl ; persistent_hashtbl Int (* ; poly_hashtbl *) ; map Int ; wbt Int ; flat_hashtbl ; hashtrie Int ; hashtrie_mut Int ; hamt Int ] let modules_string = [ hashtbl_make Str ; map Str ; wbt Str ; hashtrie Str ; persistent_hashtbl Str ; hamt Str ; trie ] let bench_add_to which n = let make (module T : INT_MUT) = let run() = let t = T.create 50 in for i = n downto 0 do T.add t i i; done in T.name, run, () in B.throughputN 3 ~repeat (List.map make which) let bench_add = bench_add_to modules_int let bench_add_string_to l n = let keys = CCList.( 1 -- n |> map (fun i->string_of_int i,i)) in let make (module T : STRING_MUT) = let run() = let t = T.create 50 in List.iter (fun (k,v) -> T.add t k v) keys in T.name, run, () in B.throughputN 3 ~repeat (List.map make l) let bench_add_string = bench_add_string_to modules_string let bench_replace n = let make (module T : INT_MUT) = let run() = let t = T.create 50 in for i = 0 to n do T.replace t i i; done; for i = n downto 0 do T.replace t i i; done; () in T.name, run, () in B.throughputN 3 ~repeat (List.map make modules_int) module type INT_FIND = sig type 'a t val name : string val init : int -> (int -> 'a) -> 'a t val find : 'a t -> int -> 'a end let find_of_mut (module T : INT_MUT) : (module INT_FIND) = let module U = struct include T let init n f = let t = T.create n in for i=0 to n-1 do T.add t i (f i) done; t end in (module U) let array = let module T = struct type 'a t = 'a array let name = "array" let init = Array.init let find a i = a.(i) end in (module T : INT_FIND) let persistent_array = let module A = CCPersistentArray in let module T = struct type 'a t = 'a A.t let name = "persistent_array" let init = A.init let find = A.get end in (module T : INT_FIND) let modules_int_find = [ array ; persistent_array ] @ List.map find_of_mut modules_int let bench_find_to which n = let make (module T : INT_FIND) = let m = T.init n (fun i -> i) in let run() = for i = 0 to n-1 do ignore (T.find m i) done in T.name, run, () in Benchmark.throughputN 3 ~repeat (List.map make which) let bench_find = bench_find_to modules_int_find let bench_find_string_to l n = let keys = CCList.( 1 -- n |> map (fun i->string_of_int i,i)) in let make (module T : STRING_MUT) = let m = T.create n in List.iter (fun (k,v) -> T.add m k v) keys; let run() = List.iter (fun (k,_) -> ignore (T.find m k)) keys in T.name, run, () in Benchmark.throughputN 3 ~repeat (List.map make l) let bench_find_string = bench_find_string_to modules_string let () = B.Tree.register ("tbl" @>>> [ "add_int" @>> app_ints bench_add [10; 100; 1_000; 10_000;] ; "add_string" @>> app_ints bench_add_string [10; 100; 1_000; 10_000;] ; "replace" @>> app_ints bench_replace [10; 100; 1_000; 10_000] ; "find" @>> app_ints bench_find [10; 20; 100; 1_000; 10_000] ; "find_string" @>> app_ints bench_find_string [10; 20; 100; 1_000; 10_000] ]); B.Tree.register ("tbl_persistent" @>>> (* we also compare to the regular Hashtbl, as a frame of reference *) let l_int = [persistent_hashtbl Int; persistent_hashtbl_ref Int; hashtbl_make Int ] in let l_str = [persistent_hashtbl Str; persistent_hashtbl_ref Str; hashtbl_make Str ] in [ "add_int" @>> app_ints (bench_add_to l_int) [10; 100; 1_000; 10_000;] ; "find_int" @>> app_ints (bench_find_to (List.map find_of_mut l_int)) [10; 20; 100; 1_000; 10_000] ; "add_string" @>> app_ints (bench_add_string_to l_str) [10; 100; 1_000; 10_000;] ; "find_string" @>> app_ints (bench_find_string_to l_str) [10; 20; 100; 1_000; 10_000] ]); () end module Iter = struct (** {2 Sequence/Gen} *) let bench_fold n = let seq () = Sequence.fold (+) 0 Sequence.(0 --n) in let gen () = Gen.fold (+) 0 Gen.(0 -- n) in let klist () = CCKList.fold (+) 0 CCKList.(0 -- n) in B.throughputN 3 ~repeat [ "sequence.fold", seq, (); "gen.fold", gen, (); "klist.fold", klist, (); ] let bench_flat_map n = let seq () = Sequence.( 0 -- n |> flat_map (fun x -> x-- (x+10)) |> fold (+) 0 ) and gen () = Gen.( 0 -- n |> flat_map (fun x -> x-- (x+10)) |> fold (+) 0 ) and klist () = CCKList.( 0 -- n |> flat_map (fun x -> x-- (x+10)) |> fold (+) 0 ) in B.throughputN 3 ~repeat [ "sequence.flat_map", seq, (); "gen.flat_map", gen, (); "klist.flat_map", klist, (); ] let bench_iter n = let seq () = let i = ref 2 in Sequence.( 1 -- n |> iter (fun x -> i := !i * x) ) and gen () = let i = ref 2 in Gen.( 1 -- n |> iter (fun x -> i := !i * x) ) and klist () = let i = ref 2 in CCKList.( 1 -- n |> iter (fun x -> i := !i * x) ) in B.throughputN 3 ~repeat [ "sequence.iter", seq, (); "gen.iter", gen, (); "klist.iter", klist, (); ] let () = B.Tree.register ( "iter" @>>> [ "fold" @>> app_ints bench_fold [100; 1_000; 10_000; 1_000_000] ; "flat_map" @>> app_ints bench_flat_map [1_000; 10_000] ; "iter" @>> app_ints bench_iter [1_000; 10_000] ]) end module Batch = struct (** benchmark CCBatch *) module type COLL = sig val name : string include CCBatch.COLLECTION val doubleton : 'a -> 'a -> 'a t val (--) : int -> int -> int t val equal : int t -> int t -> bool end module Make(C : COLL) = struct let f1 x = x mod 2 = 0 let f2 x = -x let f3 x = C.doubleton x (x+1) let f4 x = -x let collect a = C.fold (+) 0 a let naive a = let a = C.filter f1 a in let a = C.flat_map f3 a in let a = C.filter f1 a in let a = C.map f2 a in let a = C.flat_map f3 a in let a = C.map f4 a in ignore (collect a); a module BA = CCBatch.Make(C) let ops = BA.(filter f1 >>> flat_map f3 >>> filter f1 >>> map f2 >>> flat_map f3 >>> map f4) let batch a = let a = BA.apply ops a in ignore (collect a); a let bench_for ~time n = let a = C.(0 -- n) in (* debug CCPrint.printf "naive: %a\n" (CCArray.pp CCInt.pp) (naive a); CCPrint.printf "simple: %a\n" (CCArray.pp CCInt.pp) (batch_simple a); CCPrint.printf "batch: %a\n" (CCArray.pp CCInt.pp) (batch a); *) assert (C.equal (batch a) (naive a)); B.throughputN time ~repeat [ C.name ^ "_naive", naive, a ; C.name ^ "_batch", batch, a ] let bench = C.name @>> B.Tree.concat [ app_int (bench_for ~time:1) 100 ; app_int (bench_for ~time:4) 100_000 ; app_int (bench_for ~time:4) 1_000_000 ] end module BenchArray = Make(struct include CCArray let name = "array" let equal a b = a=b let doubleton x y = [| x; y |] let fold = Array.fold_left end) module BenchList = Make(struct include CCList let name = "list" let equal a b = a=b let doubleton x y = [ x; y ] let fold = List.fold_left end) module BenchKList = Make(struct include CCKList let name = "klist" let equal a b = equal (=) a b let doubleton x y = CCKList.of_list [ x; y ] end) let () = B.Tree.register ( "batch" @>> B.Tree.concat [ BenchKList.bench ; BenchArray.bench ; BenchList.bench ]) end module Deque = struct module type DEQUE = sig type 'a t val create : unit -> 'a t val of_seq : 'a Sequence.t -> 'a t val iter : ('a -> unit) -> 'a t -> unit val push_front : 'a t -> 'a -> unit val push_back : 'a t -> 'a -> unit val is_empty : 'a t -> bool val take_front : 'a t -> 'a val take_back : 'a t -> 'a val append_back : into:'a t -> 'a t -> unit val length : _ t -> int end module Base : DEQUE = struct type 'a elt = { content : 'a; mutable prev : 'a elt; mutable next : 'a elt; } (** A cell holding a single element *) and 'a t = 'a elt option ref (** The deque, a double linked list of cells *) exception Empty let create () = ref None let is_empty d = match !d with | None -> true | Some _ -> false let push_front d x = match !d with | None -> let rec elt = { content = x; prev = elt; next = elt; } in d := Some elt | Some first -> let elt = { content = x; prev = first.prev; next=first; } in first.prev.next <- elt; first.prev <- elt; d := Some elt let push_back d x = match !d with | None -> let rec elt = { content = x; prev = elt; next = elt; } in d := Some elt | Some first -> let elt = { content = x; next=first; prev=first.prev; } in first.prev.next <- elt; first.prev <- elt let take_back d = match !d with | None -> raise Empty | Some first when first == first.prev -> (* only one element *) d := None; first.content | Some first -> let elt = first.prev in elt.prev.next <- first; first.prev <- elt.prev; (* remove [first.prev] from list *) elt.content let take_front d = match !d with | None -> raise Empty | Some first when first == first.prev -> (* only one element *) d := None; first.content | Some first -> first.prev.next <- first.next; (* remove [first] from list *) first.next.prev <- first.prev; d := Some first.next; first.content let iter f d = match !d with | None -> () | Some first -> let rec iter elt = f elt.content; if elt.next != first then iter elt.next in iter first let of_seq seq = let q =create () in seq (push_back q); q let append_back ~into q = iter (push_back into) q let length q = let n = ref 0 in iter (fun _ -> incr n) q; !n end module FQueue : DEQUE = struct type 'a t = 'a CCFQueue.t ref let create () = ref CCFQueue.empty let of_seq s = ref (CCFQueue.of_seq s) let iter f q = CCFQueue.iter f !q let push_front q x = q:= CCFQueue.cons x !q let push_back q x = q:= CCFQueue.snoc !q x let is_empty q = CCFQueue.is_empty !q let take_front q = let x, q' = CCFQueue.take_front_exn !q in q := q'; x let take_back q = let q', x = CCFQueue.take_back_exn !q in q := q'; x let append_back ~into q = into := CCFQueue.append !into !q let length q = CCFQueue.size !q end let base = (module Base : DEQUE) let cur = (module CCDeque : DEQUE) let fqueue = (module FQueue : DEQUE) let bench_iter n = let seq = Sequence.(1 -- n) in let make (module D : DEQUE) = let q = D.of_seq seq in fun () -> let n = ref 0 in D.iter (fun _ -> incr n) q; () in B.throughputN 3 ~repeat [ "base", make base, () ; "cur", make cur, () ; "fqueue", make fqueue, () ] let bench_push_front n = let make (module D : DEQUE) () = let q = D.create() in for i=0 to n do D.push_front q i done in B.throughputN 3 ~repeat [ "base", make base, () ; "cur", make cur, () ; "fqueue", make fqueue, () ] let bench_push_back n = let make (module D : DEQUE) = let q = D.create() in fun () -> for i=0 to n do D.push_back q i done in B.throughputN 3 ~repeat [ "base", make base, () ; "cur", make cur, () ; "fqueue", make fqueue, () ] let bench_append n = let seq = Sequence.(1 -- n) in let make (module D :DEQUE) = let q1 = D.of_seq seq in let q2 = D.of_seq seq in fun () -> D.append_back ~into:q1 q2 in B.throughputN 3 ~repeat [ "base", make base, () ; "cur", make cur, () ; "fqueue", make fqueue, () ] let bench_length n = let seq = Sequence.(1--n) in let make (module D:DEQUE) = let q = D.of_seq seq in fun () -> ignore (D.length q) in B.throughputN 3 ~repeat [ "base", make base, () ; "cur", make cur, () ; "fqueue", make fqueue, () ] let () = B.Tree.register ( "deque" @>>> [ "iter" @>> app_ints bench_iter [100; 1_000; 100_000] ; "push_front" @>> app_ints bench_push_front [100; 1_000; 100_000] ; "push_back" @>> app_ints bench_push_back [100; 1_000; 100_000] ; "append_back" @>> app_ints bench_append [100; 1_000; 100_000] ; "length" @>> app_ints bench_length [100; 1_000] ] ) end module Thread = struct module Q = CCBlockingQueue module type TAKE_PUSH = sig val take : 'a Q.t -> 'a val push : 'a Q.t -> 'a -> unit val take_list: 'a Q.t -> int -> 'a list val push_list : 'a Q.t -> 'a list -> unit end let cur = (module Q : TAKE_PUSH) let naive = let module Q = struct let take = Q.take let push = Q.push let push_list q l = List.iter (push q) l let rec take_list q n = if n=0 then [] else let x = take q in x :: take_list q (n-1) end in (module Q : TAKE_PUSH) (* n senders, n receivers *) let bench_queue ~size ~senders ~receivers n = let make (module TP : TAKE_PUSH) = let l = CCList.(1 -- n) in fun () -> let q = Q.create size in let res = CCLock.create 0 in let expected_res = 2 * senders * Sequence.(1 -- n |> fold (+) 0) in let a_senders = CCThread.Arr.spawn senders (fun _ -> TP.push_list q l; TP.push_list q l ) and a_receivers = CCThread.Arr.spawn receivers (fun _ -> let l1 = TP.take_list q n in let l2 = TP.take_list q n in let n = List.fold_left (+) 0 l1 + List.fold_left (+) 0 l2 in CCLock.update res ((+) n); () ) in CCThread.Arr.join a_senders; CCThread.Arr.join a_receivers; assert (expected_res = CCLock.get res); () in B.throughputN 3 ~repeat [ "cur", make cur, () ; "naive", make naive, () ] let fib_pool_ ~size n = let module P = CCPool.Make(struct let min_size = 0 let max_size = size end) in let open P.Fut.Infix in let rec fib n = if n<=1 then P.Fut.return 1 else let f1 = fib (n-1) and f2 = fib (n-2) in P.Fut.return (+) <*> f1 <*> f2 in P.Fut.get (fib n) let fib_manual n = let rec fib n = if n<= 1 then 1 else fib (n-1) + fib (n-2) in fib n (* pool of size [size] *) let bench_pool ~size n = assert (fib_manual n = fib_pool_ ~size n); B.throughputN 3 ~repeat [ "sequential", fib_manual, n ; "pool", fib_pool_ ~size, n ] let bench_sequence ~size n = let module P = CCPool.Make(struct let min_size = 0 let max_size = size end) in let id_ x = Thread.delay 0.0001; x in let mk_list() = CCList.init n (P.Fut.make1 id_) in let mk_sequence () = let l = mk_list() in P.Fut.sequence_l l |> P.Fut.get (* reserves a thread for the computation *) and mk_blocking () = let l = mk_list() in P.Fut.make (fun () -> List.map P.Fut.get l) |> P.Fut.get in B.throughputN 3 ~repeat [ "sequence", mk_sequence, () ; "blocking", mk_blocking, () ] let () = B.Tree.register ( let take_push = CCList.map (fun (size,senders,receivers) -> Printf.sprintf "queue.take/push (size=%d,senders=%d,receivers=%d)" size senders receivers @>> app_ints (bench_queue ~size ~senders ~receivers) [100; 1_000] ) [ 2, 3, 3 ; 5, 3, 3 ; 1, 5, 5 ; 2, 10, 10 ; 5, 10, 10 ; 20, 10, 10 ] in "thread" @>>> ( take_push @ [ "fib_size5" @>> app_ints (bench_pool ~size:5) [10; 15; 30; 35] ; "fib_size15" @>> app_ints (bench_pool ~size:15) [10; 15; 30; 35] ; "sequence" @>> app_ints (bench_sequence ~size:15) [100; 500; 10_000; 100_000] ] ) ) end module Graph = struct (* divisors graph *) let div_children_ i = (* divisors of [i] that are [>= j] *) let rec aux j i yield = if j < i then ( if (i mod j = 0) then yield (i,j); aux (j+1) i yield ) in aux 1 i let div_graph_ = {CCGraph. origin=fst; dest=snd; children=div_children_ } module H = Hashtbl.Make(CCInt) let dfs_raw n () = let explored = H.create (n+10) in let st = Stack.create() in let res = ref 0 in Stack.push n st; while not (Stack.is_empty st) do let i = Stack.pop st in if not (H.mem explored i) then ( H.add explored i (); incr res; div_children_ i (fun (_,j) -> Stack.push j st); ) done; !res let dfs_ n () = let tbl = CCGraph.mk_table ~eq:CCInt.equal ~hash:CCInt.hash (n+10) in CCGraph.Traverse.dfs ~tbl ~graph:div_graph_ (Sequence.return n) |> Sequence.fold (fun acc _ -> acc+1) 0 let dfs_event n () = let tbl = CCGraph.mk_table ~eq:CCInt.equal ~hash:CCInt.hash (n+10) in CCGraph.Traverse.Event.dfs ~tbl ~graph:div_graph_ (Sequence.return n) |> Sequence.fold (fun acc -> function | `Enter _ -> acc+1 | `Exit _ | `Edge _ -> acc) 0 let bench_dfs n = assert ( let n1 = dfs_raw n () in let n2 = dfs_ n () in let n3 = dfs_event n () in n1 = n2 && n2 = n3); B.throughputN 2 ~repeat [ "raw", dfs_raw n, () ; "ccgraph", dfs_ n, () ; "ccgraph_event", dfs_event n, () ] let () = B.Tree.register ("graph" @>>> [ "dfs" @>> app_ints bench_dfs [100; 1000; 10_000; 50_000; 100_000; 500_000] ] ) end module Str = struct (* random string, but always returns the same for a given size *) let rand_str_ n = let module Q = Quickcheck in let st = Random.State.make [| n |] in let gen_c = Q.Gen.oneofl (CCString.to_list "abcdefghijkl") in Q.Gen.string_size ~gen:gen_c (Q.Gen.return n) st (* note: inefficient *) let find ?(start=0) ~sub s = let n = String.length sub in let i = ref start in try while !i + n <= String.length s do if CCString.is_sub ~sub 0 s !i ~len:n then raise Exit; incr i done; -1 with Exit -> !i (* note: inefficient *) let rfind ~sub s = let n = String.length sub in let i = ref (String.length s - n) in try while !i >= 0 do if CCString.is_sub ~sub 0 s !i ~len:n then raise Exit; decr i done; ~-1 with Exit -> !i let find_all ?(start=0) ~sub s = let i = ref start in fun () -> let res = find ~sub s ~start:!i in if res = ~-1 then None else ( i := res + String.length sub; Some res ) let find_all_l ?start ~sub s = find_all ?start ~sub s |> Gen.to_list let pp_pb needle haystack = Format.printf "search needle `%s` in `%s`...@." needle (String.sub haystack 0 (min 300 (String.length haystack))) (* benchmark String.{,r}find *) let bench_find_ ~dir ~size n = let needle = rand_str_ size in let haystack = rand_str_ n in pp_pb needle haystack; let mk_naive = match dir with | `Direct -> fun () -> find ~sub:needle haystack | `Reverse -> fun () -> rfind ~sub:needle haystack and mk_current = match dir with | `Direct -> fun () -> CCString.find ~sub:needle haystack | `Reverse -> fun () -> CCString.rfind ~sub:needle haystack in assert (mk_naive () = mk_current ()); B.throughputN 3 ~repeat [ "naive", mk_naive, () ; "current", mk_current, () ] (* benchmark String.find_all *) let bench_find_all ~size n = let needle = rand_str_ size in let haystack = rand_str_ n in pp_pb needle haystack; let mk_naive () = find_all_l ~sub:needle haystack and mk_current () = CCString.find_all_l ~sub:needle haystack in assert (mk_naive () = mk_current ()); B.throughputN 3 ~repeat [ "naive", mk_naive, () ; "current", mk_current, () ] let bench_find = bench_find_ ~dir:`Direct let bench_rfind = bench_find_ ~dir:`Reverse let () = B.Tree.register ( "string" @>>> [ "find" @>>> [ "1" @>> app_ints (bench_find ~size:1) [100; 100_000; 500_000] ; "5" @>> app_ints (bench_find ~size:5) [100; 100_000; 500_000] ; "15" @>> app_ints (bench_find ~size:15) [100; 100_000; 500_000] ; "50" @>> app_ints (bench_find ~size:50) [100; 100_000; 500_000] ; "500" @>> app_ints (bench_find ~size:500) [100_000; 500_000] ]; "find_all" @>>> [ "1" @>> app_ints (bench_find_all ~size:1) [100; 100_000; 500_000] ; "5" @>> app_ints (bench_find_all ~size:5) [100; 100_000; 500_000] ; "15" @>> app_ints (bench_find_all ~size:15) [100; 100_000; 500_000] ; "50" @>> app_ints (bench_find_all ~size:50) [100; 100_000; 500_000] ; "500" @>> app_ints (bench_find_all ~size:500) [100_000; 500_000] ]; "rfind" @>>> [ "15" @>> app_ints (bench_rfind ~size:15) [100; 100_000; 500_000] ; "50" @>> app_ints (bench_rfind ~size:50) [100; 100_000; 500_000] ; "500" @>> app_ints (bench_rfind ~size:500) [100_000; 500_000] ]; ]) end module Alloc = struct module type ALLOC_ARR = sig type 'a t val name : string val create : int -> 'a t val make : 'a t -> int -> 'a -> 'a array val free : 'a t -> 'a array -> unit end let dummy = let module A = struct type _ t = unit let name = "dummy" let create _ = () let make _ i x = Array.make i x let free _ _ = () end in (module A : ALLOC_ARR) let alloc_cache ~buck_size = let module A = struct type 'a t = 'a CCAllocCache.Arr.t let name = Printf.sprintf "alloc_cache(%d)" buck_size let create n = CCAllocCache.Arr.create ~buck_size n let make = CCAllocCache.Arr.make let free = CCAllocCache.Arr.free end in (module A : ALLOC_ARR) (* repeat [n] times: - repeat [batch] times: - allocate [batch] arrays of size from 1 to batch+1 - free those arrays *) let bench1 ~batch n = let make (module C : ALLOC_ARR) () = let c = C.create (batch*2) in let tmp = Array.make (batch * batch) [||] in (* temporary storage *) for _ = 1 to n do for j = 0 to batch-1 do for k = 0 to batch-1 do tmp.(j*batch + k) <- C.make c (k+1) '_'; done; done; Array.iter (C.free c) tmp (* free the whole array *) done in B.throughputN 3 ~repeat [ "dummy", make dummy, () ; "cache(5)", make (alloc_cache ~buck_size:5), () ; "cache(20)", make (alloc_cache ~buck_size:20), () ; "cache(50)", make (alloc_cache ~buck_size:50), () ] let () = B.Tree.register ( "alloc" @>>> [ "bench1(batch=5)" @>> app_ints (bench1 ~batch:5) [100; 1_000] ; "bench1(batch=15)" @>> app_ints (bench1 ~batch:15) [100; 1_000] ; "bench1(batch=50)" @>> app_ints (bench1 ~batch:50) [100; 1_000] ] ) end let () = try B.Tree.run_global () with Arg.Help msg -> print_endline msg