(* This file is free software, part of containers. See file "license" for more details. *) (** {1 Lazy Tree Structure} This structure can be used to represent trees and directed graphs (as infinite trees) in a lazy fashion. Like {!CCKList}, it is a structural type. *) type 'a iter = ('a -> unit) -> unit type 'a gen = unit -> 'a option type 'a printer = Format.formatter -> 'a -> unit (** {2 Basics} *) type +'a t = unit -> [`Nil | `Node of 'a * 'a t list] val empty : 'a t val is_empty : _ t -> bool val singleton : 'a -> 'a t (** Tree with only one label. *) val node : 'a -> 'a t list -> 'a t (** Build a node from a label and a list of children. *) val node1 : 'a -> 'a t -> 'a t (** Node with one child. *) val node2 : 'a -> 'a t -> 'a t -> 'a t (** Node with two children. *) val fold : ('a -> 'b -> 'a) -> 'a -> 'b t -> 'a (** Fold on values in no specified order. May not terminate if the tree is infinite. *) val iter : ('a -> unit) -> 'a t -> unit val size : _ t -> int (** Number of elements. *) val height : _ t -> int (** Length of the longest path to empty leaves. *) val map : ('a -> 'b) -> 'a t -> 'b t val (>|=) : 'a t -> ('a -> 'b) -> 'b t val cut_depth : int -> 'a t -> 'a t (** Cut the tree at the given depth, so it becomes finite. *) (** {2 Graph Traversals} *) (** Abstract Set structure *) class type ['a] pset = object method add : 'a -> 'a pset method mem : 'a -> bool end val set_of_cmp : cmp:('a -> 'a -> int) -> unit -> 'a pset (** Build a set structure given a total ordering. *) val dfs : pset:'a pset -> 'a t -> [ `Enter of 'a | `Exit of 'a ] Seq.t (** Depth-first traversal of the tree. *) val bfs : pset:'a pset -> 'a t -> 'a Seq.t (** Breadth-first traversal of the tree. *) val force : 'a t -> ([ `Nil | `Node of 'a * 'b list ] as 'b) (** [force t] evaluates [t] completely and returns a regular tree structure. @since 0.13 *) val find : pset:'a pset -> ('a -> 'b option) -> 'a t -> 'b option (** Look for an element that maps to [Some _]. *) (** {2 Pretty-printing} Example (tree of calls for naive Fibonacci function): {[ let mk_fib n = let rec fib' l r i = if i=n then r else fib' r (l+r) (i+1) in fib' 1 1 1;; let rec fib n = match n with | 0 | 1 -> CCKTree.singleton (`Cst n) | _ -> CCKTree.node2 (`Plus (mk_fib n)) (fib (n-1)) (fib (n-2));; let pp_node fmt = function | `Cst n -> Format.fprintf fmt "%d" n | `Plus n -> Format.fprintf fmt "%d" n;; Format.printf "%a@." (CCKTree.pp pp_node) (fib 8);; ]} *) val pp : 'a printer -> 'a t printer (** A pretty-printer using S-expressions and boxes to render the tree. Empty nodes are not rendered; sharing is ignored. @since 0.9 *) (** {2 Pretty printing in the DOT (graphviz) format} *) module Dot : sig type attribute = [ | `Color of string | `Shape of string | `Weight of int | `Style of string | `Label of string | `Id of string (** Unique ID in the graph. Allows sharing. *) | `Other of string * string ] (** Dot attributes for nodes *) type graph = (string * attribute list t list) (** A dot graph is a name, plus a list of trees labelled with attributes *) val mk_id : ('a, Buffer.t, unit, attribute) format4 -> 'a (** Using a formatter string, build an ID. *) val mk_label : ('a, Buffer.t, unit, attribute) format4 -> 'a (** Using a formatter string, build a label. *) val make : name:string -> attribute list t list -> graph val singleton : name:string -> attribute list t -> graph val pp_single : string -> attribute list t printer val pp : graph printer (** Printer to DOT with indentation, etc. @since 0.6.1 *) val print_to_file : string -> graph -> unit (** [print_to_file filename g] prints [g] into a file whose name is [filename]. @since 0.6.1 *) val to_file : ?name:string -> string -> attribute list t list -> unit (** [to_file filename trees] makes a graph out of the trees, opens the file [filename] and prints the graph into the file. @param name name of the graph. @since 0.6.1 *) end