(* This file is free software, part of containers. See file "license" for more details. *) (** {1 Array utils} *) type 'a sequence = ('a -> unit) -> unit type 'a klist = unit -> [`Nil | `Cons of 'a * 'a klist] type 'a gen = unit -> 'a option type 'a equal = 'a -> 'a -> bool type 'a ord = 'a -> 'a -> int type 'a random_gen = Random.State.t -> 'a type 'a printer = Format.formatter -> 'a -> unit (*$T let st = Random.State.make [||] in let a = 0--10000 in \ let b = Array.copy a in shuffle_with st a; a <> b *) (** {2 Arrays} *) include Array type 'a t = 'a array let empty = [| |] let map = Array.map let map2 f a b = if Array.length a <> Array.length b then invalid_arg "map2"; Array.init (Array.length a) (fun i -> f (Array.unsafe_get a i) (Array.unsafe_get b i)) let length = Array.length let get = Array.get let get_safe a i = if i>=0 && i acc | `Continue -> fold_while_i f acc (i+1) else acc in fold_while_i f acc 0 (*$T fold_while (fun acc b -> if b then acc+1, `Continue else acc, `Stop) 0 (Array.of_list [true;true;false;true]) = 2 *) let fold_map f acc a = let n = length a in (* need special case for initializing the result *) if n = 0 then acc, [||] else ( let acc, b0 = f acc a.(0) in let res = Array.make n b0 in let acc = ref acc in for i = 1 to n-1 do let new_acc, b = f !acc a.(i) in acc := new_acc; res.(i) <- b; done; !acc, res ) (*$= (6, [|"1"; "2"; "3"|]) \ (fold_map (fun acc x->acc+x, string_of_int x) 0 [|1;2;3|]) *) (*$Q Q.(array int) (fun a -> \ fold_map (fun acc x -> x::acc, x) [] a = (List.rev @@ Array.to_list a, a)) *) let scan_left f acc a = let n = length a in let res = Array.make (n+1) acc in Array.iteri (fun i x -> let new_acc = f res.(i) x in res.(i+1) <- new_acc) a; res (*$= & ~printer:Q.Print.(array int) [|0;1;3;6|] (scan_left (+) 0 [|1;2;3|]) [|0|] (scan_left (+) 0 [||]) *) let iter = Array.iter let iteri = Array.iteri let blit = Array.blit let reverse_in_place a = let len = Array.length a in if len>0 then ( for k = 0 to (len-1)/2 do let t = a.(k) in a.(k) <- a.(len-1-k); a.(len-1-k) <- t; done ) (*$T reverse_in_place [| |]; true reverse_in_place [| 1 |]; true let a = [| 1; 2; 3; 4; 5 |] in \ reverse_in_place a; \ a = [| 5;4;3;2;1 |] let a = [| 1; 2; 3; 4; 5; 6 |] in \ reverse_in_place a; \ a = [| 6;5;4;3;2;1 |] *) let sorted cmp a = let b = Array.copy a in Array.sort cmp b; b (*$= & ~cmp:(=) ~printer:Q.Print.(array int) [||] (sorted Pervasives.compare [||]) [|0;1;2;3;4|] (sorted Pervasives.compare [|3;2;1;4;0|]) *) (*$Q Q.(array int) (fun a -> \ let b = Array.copy a in \ Array.sort Pervasives.compare b; b = sorted Pervasives.compare a) *) let sort_indices cmp a = let len = Array.length a in let b = Array.init len (fun k->k) in Array.sort (fun k1 k2 -> cmp a.(k1) a.(k2)) b; b (*$= & ~cmp:(=) ~printer:Q.Print.(array int) [||] (sort_indices Pervasives.compare [||]) [|4;2;1;0;3|] (sort_indices Pervasives.compare [|"d";"c";"b";"e";"a"|]) *) (*$Q Q.(array printable_string) (fun a -> \ let b = sort_indices String.compare a in \ sorted String.compare a = Array.map (Array.get a) b) *) let sort_ranking cmp a = sort_indices compare (sort_indices cmp a) (*$= & ~cmp:(=) ~printer:Q.Print.(array int) [||] (sort_ranking Pervasives.compare [||]) [|3;2;1;4;0|] (sort_ranking Pervasives.compare [|"d";"c";"b";"e";"a"|]) *) (*$Q Q.(array_of_size Gen.(0--50) printable_string) (fun a -> \ let b = sort_ranking String.compare a in \ let a_sorted = sorted String.compare a in \ a = Array.map (Array.get a_sorted) b) *) let rev a = let b = Array.copy a in reverse_in_place b; b (*$Q Q.(array small_int) (fun a -> rev (rev a) = a) *) (*$T rev [| 1; 2; 3 |] = [| 3; 2; 1 |] rev [| 1; 2; |] = [| 2; 1 |] rev [| |] = [| |] *) let rec find_aux f a i = if i = Array.length a then None else match f i a.(i) with | Some _ as res -> res | None -> find_aux f a (i+1) let find_map f a = find_aux (fun _ -> f ) a 0 let find = find_map let find_map_i f a = find_aux f a 0 let findi = find_map_i let find_idx p a = find_aux (fun i x -> if p x then Some (i,x) else None) a 0 let filter_map f a = let rec aux acc i = if i = Array.length a then ( let a' = Array.of_list acc in reverse_in_place a'; a' ) else match f a.(i) with | None -> aux acc (i+1) | Some x -> aux (x::acc) (i+1) in aux [] 0 (*$T filter_map (fun x -> if x mod 2 = 0 then Some (string_of_int x) else None) \ [| 1; 2; 3; 4 |] = [| "2"; "4" |] filter_map (fun x -> if x mod 2 = 0 then Some (string_of_int x) else None) \ [| 1; 2; 3; 4; 5; 6 |] \ = [| "2"; "4"; "6" |] *) let filter p a = filter_map (fun x -> if p x then Some x else None) a (* append [rev a] in front of [acc] *) let rec __rev_append_list a acc i = if i = Array.length a then acc else __rev_append_list a (a.(i) :: acc) (i+1) let flat_map f a = let rec aux acc i = if i = Array.length a then ( let a' = Array.of_list acc in reverse_in_place a'; a' ) else let a' = f a.(i) in aux (__rev_append_list a' acc 0) (i+1) in aux [] 0 (*$T let a = [| 1; 3; 5 |] in \ let a' = flat_map (fun x -> [| x; x+1 |]) a in \ a' = [| 1; 2; 3; 4; 5; 6 |] *) let rec _lookup_rec ~cmp k a i j = if i>j then raise Not_found else if i=j then if cmp k a.(i) = 0 then i else raise Not_found else let middle = (j+i)/2 in match cmp k a.(middle) with | 0 -> middle | n when n<0 -> _lookup_rec ~cmp k a i (middle-1) | _ -> _lookup_rec ~cmp k a (middle+1) j let _lookup_exn ~cmp k a i j = if i>j then raise Not_found; match cmp k a.(i) with | 0 -> i | n when n<0 -> raise Not_found (* too low *) | _ when i=j -> raise Not_found (* too high *) | _ -> match cmp k a.(j) with | 0 -> j | n when n<0 -> _lookup_rec ~cmp k a (i+1) (j-1) | _ -> raise Not_found (* too high *) let lookup_exn ~cmp k a = _lookup_exn ~cmp k a 0 (Array.length a-1) let lookup ~cmp k a = try Some (_lookup_exn ~cmp k a 0 (Array.length a-1)) with Not_found -> None (*$T lookup ~cmp:CCInt.compare 2 [|0;1;2;3;4;5|] = Some 2 lookup ~cmp:CCInt.compare 4 [|0;1;2;3;4;5|] = Some 4 lookup ~cmp:CCInt.compare 0 [|1;2;3;4;5|] = None lookup ~cmp:CCInt.compare 6 [|1;2;3;4;5|] = None lookup ~cmp:CCInt.compare 3 [| |] = None lookup ~cmp:CCInt.compare 1 [| 1 |] = Some 0 lookup ~cmp:CCInt.compare 2 [| 1 |] = None *) let bsearch ~cmp k a = let rec aux i j = if i > j then `Just_after j else let middle = i + (j - i) / 2 in (* avoid overflow *) match cmp k a.(middle) with | 0 -> `At middle | n when n<0 -> aux i (middle - 1) | _ -> aux (middle + 1) j in let n = Array.length a in if n=0 then `Empty else match cmp a.(0) k, cmp a.(n-1) k with | c, _ when c>0 -> `All_bigger | _, c when c<0 -> `All_lower | _ -> aux 0 (n-1) (*$T bsearch bsearch ~cmp:CCInt.compare 3 [|1; 2; 2; 3; 4; 10|] = `At 3 bsearch ~cmp:CCInt.compare 5 [|1; 2; 2; 3; 4; 10|] = `Just_after 4 bsearch ~cmp:CCInt.compare 1 [|1; 2; 5; 5; 11; 12|] = `At 0 bsearch ~cmp:CCInt.compare 12 [|1; 2; 5; 5; 11; 12|] = `At 5 bsearch ~cmp:CCInt.compare 10 [|1; 2; 2; 3; 4; 9|] = `All_lower bsearch ~cmp:CCInt.compare 0 [|1; 2; 2; 3; 4; 9|] = `All_bigger bsearch ~cmp:CCInt.compare 3 [| |] = `Empty *) let (>>=) a f = flat_map f a let (>>|) a f = map f a let (>|=) a f = map f a let for_all p a = let rec aux i = i = Array.length a || (p a.(i) && aux (i+1)) in aux 0 let exists p a = let rec aux i = i <> Array.length a && (p a.(i) || aux (i+1)) in aux 0 let rec _for_all2 p a1 a2 i1 i2 ~len = len=0 || (p a1.(i1) a2.(i2) && _for_all2 p a1 a2 (i1+1) (i2+1) ~len:(len-1)) let for_all2 p a b = Array.length a = Array.length b && _for_all2 p a b 0 0 ~len:(Array.length a) let rec _exists2 p a1 a2 i1 i2 ~len = len>0 && (p a1.(i1) a2.(i2) || _exists2 p a1 a2 (i1+1) (i2+1) ~len:(len-1)) let exists2 p a b = _exists2 p a b 0 0 ~len:(min (Array.length a) (Array.length b)) let _iter2 f a b i j ~len = for o = 0 to len-1 do f (Array.get a (i+o)) (Array.get b (j+o)) done let _fold2 f acc a b i j ~len = let rec aux acc o = if o=len then acc else let acc = f acc (Array.get a (i+o)) (Array.get b (j+o)) in aux acc (o+1) in aux acc 0 let iter2 f a b = if length a <> length b then invalid_arg "iter2"; _iter2 f a b 0 0 ~len:(Array.length a) let fold2 f acc a b = if length a <> length b then invalid_arg "fold2"; _fold2 f acc a b 0 0 ~len:(Array.length a) let (--) i j = if i<=j then Array.init (j-i+1) (fun k -> i+k) else Array.init (i-j+1) (fun k -> i-k) (*$T (1 -- 4) |> Array.to_list = [1;2;3;4] (4 -- 1) |> Array.to_list = [4;3;2;1] (0 -- 0) |> Array.to_list = [0] *) (*$Q Q.(pair small_int small_int) (fun (a,b) -> \ (a -- b) |> Array.to_list = CCList.(a -- b)) *) let (--^) i j = if i=j then [| |] else if i>j then Array.init (i-j) (fun k -> i-k) else Array.init (j-i) (fun k -> i+k) (*$Q Q.(pair small_int small_int) (fun (a,b) -> \ (a --^ b) |> Array.to_list = CCList.(a --^ b)) *) (** all the elements of a, but the i-th, into a list *) let except_idx a i = foldi (fun acc j elt -> if i = j then acc else elt::acc) [] a let equal eq a b = let rec aux i = if i = Array.length a then true else eq a.(i) b.(i) && aux (i+1) in Array.length a = Array.length b && aux 0 (*$Q Q.(pair (array small_int)(array small_int)) (fun (a,b) -> \ equal (=) a b = equal (=) b a) *) (*$T equal (=) [|1|] [|1|] *) let compare cmp a b = let rec aux i = if i = Array.length a then if i = Array.length b then 0 else -1 else if i = Array.length b then 1 else let c = cmp a.(i) b.(i) in if c = 0 then aux (i+1) else c in aux 0 (*$T compare CCOrd.compare [| 1; 2; 3 |] [| 1; 2; 3 |] = 0 compare CCOrd.compare [| 1; 2; 3 |] [| 2; 2; 3 |] < 0 compare CCOrd.compare [| 1; 2; |] [| 1; 2; 3 |] < 0 compare CCOrd.compare [| 1; 2; 3 |] [| 1; 2; |] > 0 *) (* swap elements of array *) let swap a i j = if i<>j then ( let tmp = a.(i) in a.(i) <- a.(j); a.(j) <- tmp; ) (*$T let a = [| 1;2;3 |] in \ swap a 0 1; \ a = [| 2;1;3 |] let a = [| 1;2;3 |] in \ swap a 0 2; \ a = [| 3;2;1 |] *) (*$QR Q.(array small_int) (fun a -> let b = Array.copy a in for i = 0 to Array.length a-1 do for j = i+1 to Array.length a-1 do swap a i j; done; done; for i = 0 to Array.length a-1 do for j = i+1 to Array.length a-1 do swap a i j; done; done; a=b) *) (* shuffle a[i...j[ using the given int random generator See http://en.wikipedia.org/wiki/Fisher-Yates_shuffle *) let _shuffle _rand_int a i j = for k = j-1 downto i+1 do let l = _rand_int (k+1) in let tmp = a.(l) in a.(l) <- a.(k); a.(k) <- tmp; done let shuffle a = _shuffle Random.int a 0 (Array.length a) let shuffle_with st a = _shuffle (Random.State.int st) a 0 (Array.length a) let rec _to_klist a i j () = if i=j then `Nil else `Cons (a.(i), _to_klist a (i+1) j) let random_choose a st = let n = Array.length a in if n = 0 then raise Not_found; a.(Random.State.int st n) let random_len n g st = Array.init n (fun _ -> g st) let random g st = let n = Random.State.int st 1_000 in random_len n g st let random_non_empty g st = let n = 1 + Random.State.int st 1_000 in random_len n g st let pp ?(sep=", ") pp_item out a = for k = 0 to Array.length a-1 do if k > 0 then (Format.pp_print_string out sep; Format.pp_print_cut out ()); pp_item out a.(k) done let pp_i ?(sep=", ") pp_item out a = for k = 0 to Array.length a - 1 do if k > 0 then (Format.pp_print_string out sep; Format.pp_print_cut out ()); pp_item k out a.(k) done let to_seq a k = iter k a let to_gen a = let k = ref 0 in fun () -> if !k < Array.length a then ( let x = a.(!k) in incr k; Some x ) else None let to_klist a = _to_klist a 0 (Array.length a) (** {2 Generic Functions} *) module type MONO_ARRAY = sig type elt type t val length : t -> int val get : t -> int -> elt val set : t -> int -> elt -> unit end (* Dual Pivot Quicksort (Yaroslavskiy) from "average case analysis of Java 7's Dual Pivot Quicksort" *) module SortGeneric(A : MONO_ARRAY) = struct module Rand = Random.State let seed_ = [|123456|] type state = { mutable l: int; (* left pointer *) mutable g: int; (* right pointer *) mutable k: int; } let rand_idx_ rand i j = i + Rand.int rand (j-i) let swap_ a i j = if i=j then () else ( let tmp = A.get a i in A.set a i (A.get a j); A.set a j tmp ) let sort ~cmp a = let rec insert_ a i k = if k 0 then ( swap_ a k (k+1); insert_ a i (k-1) ) in (* recursive part of insertion sort *) let rec sort_insertion_rec a i j k = if k 1 then sort_insertion_rec a i j (i+1) in let rand = Rand.make seed_ in (* sort slice. There is a chance that the two pivots are equal, but it's unlikely. *) let rec sort_slice_ ~st a i j = if j-i>10 then ( st.l <- i; st.g <- j-1; st.k <- i; (* choose pivots *) let p = A.get a (rand_idx_ rand i j) in let q = A.get a (rand_idx_ rand i j) in (* invariant: st.p <= st.q, swap them otherwise *) let p, q = if cmp p q > 0 then q, p else p, q in while st.k <= st.g do let cur = A.get a st.k in if cmp cur p < 0 then ( (* insert in leftmost band *) if st.k <> st.l then swap_ a st.k st.l; st.l <- st.l + 1 ) else if cmp cur q > 0 then ( (* insert in rightmost band *) while st.k < st.g && cmp (A.get a st.g) q > 0 do st.g <- st.g - 1 done; swap_ a st.k st.g; st.g <- st.g - 1; (* the element swapped from the right might be in the first situation. that is, < p (we know it's <= q already) *) if cmp (A.get a st.k) p < 0 then ( if st.k <> st.l then swap_ a st.k st.l; st.l <- st.l + 1 ) ); st.k <- st.k + 1 done; (* save values before recursing *) let l = st.l and g = st.g and sort_middle = cmp p q < 0 in sort_slice_ ~st a i l; if sort_middle then sort_slice_ ~st a l (g+1); sort_slice_ ~st a (g+1) j; ) else sort_insertion a i j in if A.length a > 0 then ( let st = { l=0; g=A.length a; k=0; } in sort_slice_ ~st a 0 (A.length a) ) end let sort_generic (type arr)(type elt) (module A : MONO_ARRAY with type t = arr and type elt = elt) ~cmp a = let module S = SortGeneric(A) in S.sort ~cmp a (*$inject module IA = struct type elt = int type t = int array include Array end let gen_arr = Q.Gen.(array_size (1--100) small_int) let arr_arbitrary = Q.make ~print:Q.Print.(array int) ~small:Array.length ~shrink:Q.Shrink.(array ?shrink:None) gen_arr *) (*$Q & ~count:300 arr_arbitrary (fun a -> \ let a1 = Array.copy a and a2 = Array.copy a in \ Array.sort CCInt.compare a1; sort_generic ~cmp:CCInt.compare (module IA) a2; \ a1 = a2 ) *)