(* This file is free software, part of containers. See file "license" for more details. *) (** {1 Hash Tries} *) type 'a iter = ('a -> unit) -> unit type 'a gen = unit -> 'a option type 'a printer = Format.formatter -> 'a -> unit type 'a ktree = unit -> [ `Nil | `Node of 'a * 'a ktree list ] (** {2 Transient IDs} *) module Transient = struct type t = { mutable frozen: bool } let empty = { frozen = true } (* special value *) let equal a b = Stdlib.( == ) a b let create () = { frozen = false } let active st = not st.frozen let frozen st = st.frozen let freeze st = st.frozen <- true let with_ f = let r = create () in try let x = f r in freeze r; x with e -> freeze r; raise e exception Frozen end module type S = sig type key type 'a t val empty : 'a t val is_empty : _ t -> bool val singleton : key -> 'a -> 'a t val add : key -> 'a -> 'a t -> 'a t val mem : key -> _ t -> bool val get : key -> 'a t -> 'a option val get_exn : key -> 'a t -> 'a (** @raise Not_found if key not present *) val remove : key -> 'a t -> 'a t (** Remove the key, if present. *) val update : key -> f:('a option -> 'a option) -> 'a t -> 'a t (** [update k ~f m] calls [f (Some v)] if [get k m = Some v], [f None] otherwise. Then, if [f] returns [Some v'] it binds [k] to [v'], if [f] returns [None] it removes [k] *) val add_mut : id:Transient.t -> key -> 'a -> 'a t -> 'a t (** [add_mut ~id k v m] behaves like [add k v m], except it will mutate in place whenever possible. Changes done with an [id] might affect all versions of the structure obtained with the same [id] (but not other versions). @raise Transient.Frozen if [id] is frozen *) val remove_mut : id:Transient.t -> key -> 'a t -> 'a t (** Same as {!remove}, but modifies in place whenever possible @raise Transient.Frozen if [id] is frozen *) val update_mut : id:Transient.t -> key -> f:('a option -> 'a option) -> 'a t -> 'a t (** Same as {!update} but with mutability @raise Transient.Frozen if [id] is frozen *) val cardinal : _ t -> int val choose : 'a t -> (key * 'a) option val choose_exn : 'a t -> key * 'a (** @raise Not_found if not pair was found *) val iter : f:(key -> 'a -> unit) -> 'a t -> unit val fold : f:('b -> key -> 'a -> 'b) -> x:'b -> 'a t -> 'b (** {6 Conversions} *) val to_list : 'a t -> (key * 'a) list val add_list : 'a t -> (key * 'a) list -> 'a t val add_list_mut : id:Transient.t -> 'a t -> (key * 'a) list -> 'a t (** @raise Frozen if the ID is frozen *) val of_list : (key * 'a) list -> 'a t val add_iter : 'a t -> (key * 'a) iter -> 'a t val add_iter_mut : id:Transient.t -> 'a t -> (key * 'a) iter -> 'a t (** @raise Frozen if the ID is frozen *) val of_iter : (key * 'a) iter -> 'a t val to_iter : 'a t -> (key * 'a) iter val add_gen : 'a t -> (key * 'a) gen -> 'a t val add_gen_mut : id:Transient.t -> 'a t -> (key * 'a) gen -> 'a t (** @raise Frozen if the ID is frozen *) val of_gen : (key * 'a) gen -> 'a t val to_gen : 'a t -> (key * 'a) gen (** {6 IO} *) val pp : key printer -> 'a printer -> 'a t printer val as_tree : 'a t -> [ `L of int * (key * 'a) list | `N ] ktree (** For debugging purpose: explore the structure of the tree, with [`L (h,l)] being a leaf (with shared hash [h]) and [`N] an inner node *) end module type KEY = sig type t val equal : t -> t -> bool val hash : t -> int end (* from https://en.wikipedia.org/wiki/Hamming_weight //This uses fewer arithmetic operations than any other known //implementation on machines with slow multiplication. //It uses 17 arithmetic operations. int popcount_2(uint64_t x) { x -= (x >> 1) & m1; //put count of each 2 bits into those 2 bits x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits x = (x + (x >> 4)) & m4; //put count of each 8 bits into those 8 bits x += x >> 8; //put count of each 16 bits into their lowest 8 bits x += x >> 16; //put count of each 32 bits into their lowest 8 bits x += x >> 32; //put count of each 64 bits into their lowest 8 bits return x & 0x7f; } m1 = 0x5555555555555555 m2 = 0x3333333333333333 m4 = 0x0f0f0f0f0f0f0f0f We use Int64 for our 64-bits popcount. *) module I64 = struct type t = Int64.t let ( + ) = Int64.add let ( - ) = Int64.sub let ( lsl ) = Int64.shift_left let ( lsr ) = Int64.shift_right_logical let ( land ) = Int64.logand let ( lor ) = Int64.logor let lnot = Int64.lognot end let popcount (b : I64.t) : int = let open I64 in let b = b - ((b lsr 1) land 0x5555555555555555L) in let b = (b land 0x3333333333333333L) + ((b lsr 2) land 0x3333333333333333L) in let b = (b + (b lsr 4)) land 0x0f0f0f0f0f0f0f0fL in let b = b + (b lsr 8) in let b = b + (b lsr 16) in let b = b + (b lsr 32) in Int64.to_int (b land 0x7fL) (* sparse array, using a bitfield and POPCOUNT *) module A_SPARSE = struct type 'a t = { bits: int64; arr: 'a array; id: Transient.t; } let length_log = 6 let length = 1 lsl length_log let () = assert (length = 64) let create ~id = { bits = 0L; arr = [||]; id } let owns ~id a = Transient.active id && Transient.equal id a.id let get ~default a i = let open I64 in let idx = 1L lsl i in if a.bits land idx = 0L then default else ( let real_idx = popcount (a.bits land (idx - 1L)) in a.arr.(real_idx) ) let set ~mut a i x = let open I64 in let idx = 1L lsl i in let real_idx = popcount (a.bits land (idx - 1L)) in if a.bits land idx = 0L then ( (* insert at [real_idx] in a new array *) let bits = a.bits lor idx in let n = Array.length a.arr in let arr = Array.make Stdlib.(n + 1) x in arr.(real_idx) <- x; if real_idx > 0 then Array.blit a.arr 0 arr 0 real_idx; (if real_idx < n then let open Stdlib in Array.blit a.arr real_idx arr (real_idx + 1) (n - real_idx)); { a with bits; arr } ) else if (* replace element at [real_idx] *) mut then ( a.arr.(real_idx) <- x; a ) else ( let arr = if mut then a.arr else Array.copy a.arr in arr.(real_idx) <- x; { a with arr } ) let update ~mut ~default a i f = let open I64 in let idx = 1L lsl i in let real_idx = popcount (a.bits land (idx - 1L)) in if a.bits land idx = 0L then ( (* not present *) let x = f default in (* insert at [real_idx] in a new array *) let bits = a.bits lor idx in let n = Array.length a.arr in let arr = Array.make Stdlib.(n + 1) x in if real_idx > 0 then Array.blit a.arr 0 arr 0 real_idx; (if real_idx < n then let open Stdlib in Array.blit a.arr real_idx arr (real_idx + 1) (n - real_idx)); { a with bits; arr } ) else ( let x = f a.arr.(real_idx) in (* replace element at [real_idx] *) let arr = if mut then a.arr else Array.copy a.arr in arr.(real_idx) <- x; { a with arr } ) let remove a i = let open I64 in let idx = 1L lsl i in let real_idx = popcount (a.bits land (idx - 1L)) in if a.bits land idx = 0L then a (* not present *) else ( (* remove at [real_idx] *) let bits = a.bits land lnot idx in let n = Array.length a.arr in let arr = if n = 1 then [||] else Array.make Stdlib.(n - 1) a.arr.(0) in let open Stdlib in if real_idx > 0 then Array.blit a.arr 0 arr 0 real_idx; if real_idx + 1 < n then Array.blit a.arr (real_idx + 1) arr real_idx (n - real_idx - 1); { a with bits; arr } ) let iter f a = Array.iter f a.arr let fold f acc a = Array.fold_left f acc a.arr end (** {2 Functors} *) module Make (Key : KEY) : S with type key = Key.t = struct module A = A_SPARSE let () = assert (A.length = 1 lsl A.length_log) module Hash : sig type t = private int val make : Key.t -> t val zero : t (* special "hash" *) val is_0 : t -> bool val equal : t -> t -> bool val rem : t -> int (* [A.length_log] last bits *) val quotient : t -> t (* remove [A.length_log] last bits *) end = struct type t = int let make = Key.hash let zero = 0 let is_0 h = h = 0 let equal : int -> int -> bool = Stdlib.( = ) let rem h = h land (A.length - 1) let quotient h = h lsr A.length_log end let hash_ = Hash.make type key = Key.t (* association list, without duplicates *) type 'a leaf = | Nil | One of key * 'a | Two of key * 'a * key * 'a | Cons of key * 'a * 'a leaf type 'a t = | E | S of Hash.t * key * 'a (* single pair *) | L of Hash.t * 'a leaf (* same hash for all elements *) | N of 'a leaf * 'a t A.t (* leaf for hash=0, subnodes *) (* invariants: L [] --> E N [E, E,...., E] -> E *) let empty = E let is_empty = function | E -> true | L (_, Nil) -> assert false | S _ | L _ | N _ -> false let leaf_ k v ~h = L (h, Cons (k, v, Nil)) let singleton k v = leaf_ k v ~h:(hash_ k) let rec get_exn_list_ k l = match l with | Nil -> raise Not_found | One (k', v') -> if Key.equal k k' then v' else raise Not_found | Two (k1, v1, k2, v2) -> if Key.equal k k1 then v1 else if Key.equal k k2 then v2 else raise Not_found | Cons (k', v', tail) -> if Key.equal k k' then v' else get_exn_list_ k tail let rec get_exn_ k ~h m = match m with | E -> raise Not_found | S (_, k', v') -> if Key.equal k k' then v' else raise Not_found | L (_, l) -> get_exn_list_ k l | N (leaf, a) -> if Hash.is_0 h then get_exn_list_ k leaf else ( let i = Hash.rem h in let h' = Hash.quotient h in get_exn_ k ~h:h' (A.get ~default:E a i) ) let get_exn k m = get_exn_ k ~h:(hash_ k) m let get k m = try Some (get_exn_ k ~h:(hash_ k) m) with Not_found -> None let mem k m = try ignore (get_exn_ k ~h:(hash_ k) m); true with Not_found -> false (* TODO: use Hash.combine if array only has one non-empty LEAF element? *) (* add [k,v] to the list [l], removing old binding if any *) let rec add_list_ k v l = match l with | Nil -> One (k, v) | One (k1, v1) -> if Key.equal k k1 then One (k, v) else Two (k, v, k1, v1) | Two (k1, v1, k2, v2) -> if Key.equal k k1 then Two (k, v, k2, v2) else if Key.equal k k2 then Two (k, v, k1, v1) else Cons (k, v, l) | Cons (k', v', tail) -> if Key.equal k k' then Cons (k, v, tail) (* replace *) else Cons (k', v', add_list_ k v tail) let node_ leaf a = N (leaf, a) (* [h]: hash, with the part required to reach this leaf removed [id] is the transient ID used for mutability *) let rec add_ ~id k v ~h m = match m with | E -> S (h, k, v) | S (h', k', v') -> if Hash.equal h h' then if Key.equal k k' then S (h, k, v) (* replace *) else L (h, Cons (k, v, Cons (k', v', Nil))) else make_array_ ~id ~leaf:(Cons (k', v', Nil)) ~h_leaf:h' k v ~h | L (h', l) -> if Hash.equal h h' then L (h, add_list_ k v l) else (* split into N *) make_array_ ~id ~leaf:l ~h_leaf:h' k v ~h | N (leaf, a) -> if Hash.is_0 h then node_ (add_list_ k v leaf) a else ( let mut = A.owns ~id a in (* can we modify [a] in place? *) node_ leaf (add_to_array_ ~id ~mut k v ~h a) ) (* make an array containing a leaf, and insert (k,v) in it *) and make_array_ ~id ~leaf ~h_leaf:h' k v ~h = let a = A.create ~id in let a, leaf = if Hash.is_0 h' then a, leaf else ( (* put leaf in the right bucket *) let i = Hash.rem h' in let h'' = Hash.quotient h' in A.set ~mut:true a i (L (h'', leaf)), Nil ) in (* then add new node *) let a, leaf = if Hash.is_0 h then a, add_list_ k v leaf else add_to_array_ ~id ~mut:true k v ~h a, leaf in N (leaf, a) (* add k->v to [a] *) and add_to_array_ ~id ~mut k v ~h a = (* insert in a bucket *) let i = Hash.rem h in let h' = Hash.quotient h in A.update ~default:E ~mut a i (fun x -> add_ ~id k v ~h:h' x) let add k v m = add_ ~id:Transient.empty k v ~h:(hash_ k) m let add_mut ~id k v m = if Transient.frozen id then raise Transient.Frozen; add_ ~id k v ~h:(hash_ k) m exception LocalExit let is_empty_arr_ a = try A.iter (fun t -> if not (is_empty t) then raise LocalExit) a; true with LocalExit -> false let is_empty_list_ = function | Nil -> true | One _ | Two _ | Cons _ -> false let rec remove_list_ k l = match l with | Nil -> Nil | One (k', _) -> if Key.equal k k' then Nil else l | Two (k1, v1, k2, v2) -> if Key.equal k k1 then One (k2, v2) else if Key.equal k k2 then One (k1, v1) else l | Cons (k', v', tail) -> if Key.equal k k' then tail else Cons (k', v', remove_list_ k tail) let rec remove_rec_ ~id k ~h m = match m with | E -> E | S (_, k', _) -> if Key.equal k k' then E else m | L (h, l) -> let l = remove_list_ k l in if is_empty_list_ l then E else L (h, l) | N (leaf, a) -> let leaf, a = if Hash.is_0 h then remove_list_ k leaf, a else ( let i = Hash.rem h in let h' = Hash.quotient h in let new_t = remove_rec_ ~id k ~h:h' (A.get ~default:E a i) in if is_empty new_t then leaf, A.remove a i (* remove sub-tree *) else ( let mut = A.owns ~id a in leaf, A.set ~mut a i new_t ) ) in if is_empty_list_ leaf && is_empty_arr_ a then E else N (leaf, a) let remove k m = remove_rec_ ~id:Transient.empty k ~h:(hash_ k) m let remove_mut ~id k m = if Transient.frozen id then raise Transient.Frozen; remove_rec_ ~id k ~h:(hash_ k) m let update_ ~id k f m = let h = hash_ k in let opt_v = try Some (get_exn_ k ~h m) with Not_found -> None in match opt_v, f opt_v with | None, None -> m | Some _, Some v | None, Some v -> add_ ~id k v ~h m | Some _, None -> remove_rec_ ~id k ~h m let update k ~f m = update_ ~id:Transient.empty k f m let update_mut ~id k ~f m = if Transient.frozen id then raise Transient.Frozen; update_ ~id k f m let iter ~f t = let rec aux = function | E -> () | S (_, k, v) -> f k v | L (_, l) -> aux_list l | N (l, a) -> aux_list l; A.iter aux a and aux_list = function | Nil -> () | One (k, v) -> f k v | Two (k1, v1, k2, v2) -> f k1 v1; f k2 v2 | Cons (k, v, tl) -> f k v; aux_list tl in aux t let fold ~f ~x:acc t = let rec aux acc t = match t with | E -> acc | S (_, k, v) -> f acc k v | L (_, l) -> aux_list acc l | N (l, a) -> let acc = aux_list acc l in A.fold aux acc a and aux_list acc l = match l with | Nil -> acc | One (k, v) -> f acc k v | Two (k1, v1, k2, v2) -> f (f acc k1 v1) k2 v2 | Cons (k, v, tl) -> let acc = f acc k v in aux_list acc tl in aux acc t let cardinal m = fold ~f:(fun n _ _ -> n + 1) ~x:0 m let to_list m = fold ~f:(fun acc k v -> (k, v) :: acc) ~x:[] m let add_list_mut ~id m l = List.fold_left (fun acc (k, v) -> add_mut ~id k v acc) m l let add_list m l = Transient.with_ (fun id -> add_list_mut ~id m l) let of_list l = add_list empty l let add_iter_mut ~id m seq = let m = ref m in seq (fun (k, v) -> m := add_mut ~id k v !m); !m let add_iter m seq = Transient.with_ (fun id -> add_iter_mut ~id m seq) let of_iter s = add_iter empty s let to_iter m yield = iter ~f:(fun k v -> yield (k, v)) m let rec add_gen_mut ~id m g = match g () with | None -> m | Some (k, v) -> add_gen_mut ~id (add_mut ~id k v m) g let add_gen m g = Transient.with_ (fun id -> add_gen_mut ~id m g) let of_gen g = add_gen empty g (* traverse the tree by increasing hash order, where the order compares hashes lexicographically by A.length_log-wide chunks of bits, least-significant chunks first *) let to_gen m = let st = Stack.create () in Stack.push m st; let rec next () = if Stack.is_empty st then None else ( match Stack.pop st with | E -> next () | S (_, k, v) -> Some (k, v) | L (_, Nil) -> next () | L (_, One (k, v)) -> Some (k, v) | L (h, Two (k1, v1, k2, v2)) -> Stack.push (L (h, One (k2, v2))) st; Some (k1, v1) | L (h, Cons (k, v, tl)) -> Stack.push (L (h, tl)) st; (* tail *) Some (k, v) | N (l, a) -> A.iter (fun sub -> Stack.push sub st) a; Stack.push (L (Hash.zero, l)) st; (* leaf *) next () ) in next let choose m = to_gen m () let choose_exn m = match choose m with | None -> raise Not_found | Some (k, v) -> k, v let pp ppk ppv out m = let first = ref true in iter m ~f:(fun k v -> if !first then first := false else Format.fprintf out ";@ "; ppk out k; Format.pp_print_string out " -> "; ppv out v) let rec as_tree m () = match m with | E -> `Nil | S (h, k, v) -> `Node (`L ((h :> int), [ k, v ]), []) | L (h, l) -> `Node (`L ((h :> int), list_as_tree_ l), []) | N (l, a) -> `Node (`N, as_tree (L (Hash.zero, l)) :: array_as_tree_ a) and list_as_tree_ l = match l with | Nil -> [] | One (k, v) -> [ k, v ] | Two (k1, v1, k2, v2) -> [ k1, v1; k2, v2 ] | Cons (k, v, tail) -> (k, v) :: list_as_tree_ tail and array_as_tree_ a = A.fold (fun acc t -> as_tree t :: acc) [] a end