(* This file is free software, part of containers. See file "license" for more details. *) (** {1 Prefix Tree} *) type 'a iter = ('a -> unit) -> unit type 'a ktree = unit -> [ `Nil | `Node of 'a * 'a ktree list ] (** {2 Signatures} *) (** {6 A Composite Word} Words are made of characters, who belong to a total order *) module type WORD = sig type t type char_ val compare : char_ -> char_ -> int val to_iter : t -> char_ iter val of_list : char_ list -> t end module type S = sig type char_ type key type 'a t val empty : 'a t val is_empty : _ t -> bool val add : key -> 'a -> 'a t -> 'a t (** Add a binding to the trie (possibly erasing the previous one) *) val remove : key -> 'a t -> 'a t (** Remove the key, if present *) val find : key -> 'a t -> 'a option (** Find the value associated with the key, if any *) val find_exn : key -> 'a t -> 'a (** Same as {!find} but can fail. @raise Not_found if the key is not present *) val longest_prefix : key -> 'a t -> key (** [longest_prefix k m] finds the longest prefix of [k] that leads to at least one path in [m] (it does not mean that the prefix is bound to a value. Example: if [m] has keys "abc0" and "abcd", then [longest_prefix "abc2" m] will return "abc" @since 0.17 *) val update : key -> ('a option -> 'a option) -> 'a t -> 'a t (** Update the binding for the given key. The function is given [None] if the key is absent, or [Some v] if [key] is bound to [v]; if it returns [None] the key is removed, otherwise it returns [Some y] and [key] becomes bound to [y] *) val fold : ('b -> key -> 'a -> 'b) -> 'b -> 'a t -> 'b (** Fold on key/value bindings. Will use {!WORD.of_list} to rebuild keys. *) val mapi : (key -> 'a -> 'b) -> 'a t -> 'b t (** Map values, giving both key and value. Will use {!WORD.of_list} to rebuild keys. @since 0.17 *) val map : ('a -> 'b) -> 'a t -> 'b t (** Map values, giving only the value. @since 0.17 *) val iter : (key -> 'a -> unit) -> 'a t -> unit (** Same as {!fold}, but for effectful functions *) val fold_values : ('b -> 'a -> 'b) -> 'b -> 'a t -> 'b (** More efficient version of {!fold}, that doesn't keep keys *) val iter_values : ('a -> unit) -> 'a t -> unit val merge : ('a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t (** Merge two tries together. The function is used in case of conflicts, when a key belongs to both tries *) val size : _ t -> int (** Number of bindings *) (** {6 Conversions} *) val to_list : 'a t -> (key * 'a) list val of_list : (key * 'a) list -> 'a t val to_iter : 'a t -> (key * 'a) iter val of_iter : (key * 'a) iter -> 'a t val to_iter_values : 'a t -> 'a iter val to_tree : 'a t -> [ `Char of char_ | `Val of 'a | `Switch ] ktree (** {6 Ranges} *) val above : key -> 'a t -> (key * 'a) iter (** All bindings whose key is bigger or equal to the given key, in ascending order *) val below : key -> 'a t -> (key * 'a) iter (** All bindings whose key is smaller or equal to the given key, in decreasing order *) (**/**) val check_invariants : _ t -> bool (**/**) end module Make (W : WORD) : S with type char_ = W.char_ and type key = W.t = struct type char_ = W.char_ type key = W.t module M = Map.Make (struct type t = char_ let compare = W.compare end) type 'a t = | Empty | Cons of char_ * 'a t (* simple case *) | Node of 'a option * 'a t M.t (* invariants: - for Path(l,t) l is never empty - for Node (None,map) map always has at least 2 elements - for Node (Some _,map) map can be anything *) let empty = Empty let _invariant = function | Node (None, map) when M.is_empty map -> false | _ -> true let rec check_invariants = function | Empty -> true | Cons (_, t) -> check_invariants t | Node (None, map) when M.is_empty map -> false | Node (_, map) -> M.for_all (fun _ v -> check_invariants v) map let is_empty = function | Empty -> true | _ -> false let _id x = x (* fold [f] on [seq] with accumulator [acc], and call [finish] on the accumulator once [seq] is exhausted *) let _fold_iter_and_then f ~finish acc seq = let acc = ref acc in seq (fun x -> acc := f !acc x); finish !acc let _filter_map_iter f seq k = seq (fun x -> match f x with | None -> () | Some y -> k y) let _iter_map f seq k = seq (fun x -> k (f x)) let _iter_append_list_rev l seq = let l = ref l in seq (fun x -> l := x :: !l); !l let _iter_append_list l seq = List.rev_append (_iter_append_list_rev [] seq) l let iter_of_map map k = M.iter (fun key v -> k (key, v)) map (* return common prefix, and disjoint suffixes *) let rec _merge_lists l1 l2 = match l1, l2 with | [], _ | _, [] -> [], l1, l2 | c1 :: l1', c2 :: l2' -> if W.compare c1 c2 = 0 then ( let pre, rest1, rest2 = _merge_lists l1' l2' in c1 :: pre, rest1, rest2 ) else [], l1, l2 (* sub-tree t prefixed with c *) let _cons c t = Cons (c, t) (* build a Node value *) let _mk_node value map = match value with | Some _ -> Node (value, map) | None -> if M.is_empty map then Empty else if M.cardinal map = 1 then ( let c, sub = M.min_binding map in _cons c sub ) else Node (value, map) (* remove key [c] from [t] *) let _remove c t = match t with | Empty -> t | Cons (c', _) -> if W.compare c c' = 0 then Empty else t | Node (value, map) -> if M.mem c map then ( let map' = M.remove c map in _mk_node value map' ) else t let update key f t = (* first arg: current subtree and rebuild function; [c]: current char *) let goto (t, rebuild) c = match t with | Empty -> empty, fun t -> rebuild (_cons c t) | Cons (c', t') -> if W.compare c c' = 0 then t', fun t -> rebuild (_cons c t) else ( let rebuild' new_child = rebuild (if is_empty new_child then t else ( let map = M.singleton c new_child in let map = M.add c' t' map in _mk_node None map )) in empty, rebuild' ) | Node (value, map) -> (try let t' = M.find c map in (* rebuild: we modify [t], so we put the new version in [map] if it's not empty, and make the node again *) let rebuild' new_child = rebuild (if is_empty new_child then _mk_node value (M.remove c map) else _mk_node value (M.add c new_child map)) in t', rebuild' with Not_found -> let rebuild' new_child = if is_empty new_child then rebuild t (* ignore *) else ( let map' = M.add c new_child map in rebuild (_mk_node value map') ) in empty, rebuild') in let finish (t, rebuild) = match t with | Empty -> rebuild (_mk_node (f None) M.empty) | Cons (c, t') -> rebuild (match f None with | None -> t | Some _ as v -> _mk_node v (M.singleton c t')) | Node (value, map) -> let value' = f value in rebuild (_mk_node value' map) in let word = W.to_iter key in _fold_iter_and_then goto ~finish (t, _id) word let add k v t = update k (fun _ -> Some v) t let remove k t = update k (fun _ -> None) t let find_exn k t = (* at subtree [t], and character [c] *) let goto t c = match t with | Empty -> raise Not_found | Cons (c', t') -> if W.compare c c' = 0 then t' else raise Not_found | Node (_, map) -> M.find c map and finish t = match t with | Node (Some v, _) -> v | _ -> raise Not_found in let word = W.to_iter k in _fold_iter_and_then goto ~finish t word let find k t = try Some (find_exn k t) with Not_found -> None type 'a difflist = 'a list -> 'a list let _difflist_add : 'a difflist -> 'a -> 'a difflist = fun f x l' -> f (x :: l') let longest_prefix k t = (* at subtree [t], and character [c] *) let goto (t, prefix) c = match t with | Empty -> Empty, prefix | Cons (c', t') -> if W.compare c c' = 0 then t', _difflist_add prefix c else Empty, prefix | Node (_, map) -> (try let t' = M.find c map in t', _difflist_add prefix c with Not_found -> Empty, prefix) and finish (_, prefix) = W.of_list (prefix []) in let word = W.to_iter k in _fold_iter_and_then goto ~finish (t, _id) word (* fold that also keeps the path from the root, so as to provide the list of chars that lead to a value. The path is a difference list, ie a function that prepends a list to some suffix *) let rec _fold f path t acc = match t with | Empty -> acc | Cons (c, t') -> _fold f (_difflist_add path c) t' acc | Node (v, map) -> let acc = match v with | None -> acc | Some v -> f acc path v in M.fold (fun c t' acc -> _fold f (_difflist_add path c) t' acc) map acc let fold f acc t = _fold (fun acc path v -> let key = W.of_list (path []) in f acc key v) _id t acc let mapi f t = let rec map_ prefix t = match t with | Empty -> Empty | Cons (c, t') -> Cons (c, map_ (_difflist_add prefix c) t') | Node (v, map) -> let v' = match v with | None -> None | Some v -> Some (f (W.of_list (prefix [])) v) in let map' = M.mapi (fun c t' -> let prefix' = _difflist_add prefix c in map_ prefix' t') map in Node (v', map') in map_ _id t let map f t = let rec map_ = function | Empty -> Empty | Cons (c, t') -> Cons (c, map_ t') | Node (v, map) -> let v' = match v with | None -> None | Some v -> Some (f v) in let map' = M.map map_ map in Node (v', map') in map_ t let iter f t = _fold (fun () path y -> f (W.of_list (path [])) y) _id t () let _iter_prefix ~prefix f t = _fold (fun () path y -> let key = W.of_list (prefix (path [])) in f key y) _id t () let rec fold_values f acc t = match t with | Empty -> acc | Cons (_, t') -> fold_values f acc t' | Node (v, map) -> let acc = match v with | None -> acc | Some v -> f acc v in M.fold (fun _c t' acc -> fold_values f acc t') map acc let iter_values f t = fold_values (fun () x -> f x) () t let rec merge f t1 t2 = match t1, t2 with | Empty, _ -> t2 | _, Empty -> t1 | Cons (c1, t1'), Cons (c2, t2') -> if W.compare c1 c2 = 0 then _cons c1 (merge f t1' t2') else ( let map = M.add c1 t1' M.empty in let map = M.add c2 t2' map in _mk_node None map ) | Cons (c1, t1'), Node (value, map) -> (try (* collision *) let t2' = M.find c1 map in let new_t = merge f t1' t2' in let map' = if is_empty new_t then M.remove c1 map else M.add c1 new_t map in _mk_node value map' with Not_found -> (* no collision *) assert (not (is_empty t1')); Node (value, M.add c1 t1' map)) | Node _, Cons _ -> merge f t2 t1 (* previous case *) | Node (v1, map1), Node (v2, map2) -> let v = match v1, v2 with | None, _ -> v2 | _, None -> v1 | Some v1, Some v2 -> f v1 v2 in let map' = M.merge (fun _c t1 t2 -> match t1, t2 with | None, None -> assert false | Some t, None | None, Some t -> Some t | Some t1, Some t2 -> let new_t = merge f t1 t2 in if is_empty new_t then None else Some new_t) map1 map2 in _mk_node v map' let rec size t = match t with | Empty -> 0 | Cons (_, t') -> size t' | Node (v, map) -> let s = match v with | None -> 0 | Some _ -> 1 in M.fold (fun _ t' acc -> size t' + acc) map s let to_list t = fold (fun acc k v -> (k, v) :: acc) [] t let of_list l = List.fold_left (fun acc (k, v) -> add k v acc) empty l let to_iter t k = iter (fun key v -> k (key, v)) t let to_iter_values t k = iter_values k t let of_iter seq = _fold_iter_and_then (fun acc (k, v) -> add k v acc) ~finish:_id empty seq let rec to_tree t () = let _tree_node x l () = `Node (x, l) in match t with | Empty -> `Nil | Cons (c, t') -> `Node (`Char c, [ to_tree t' ]) | Node (v, map) -> let x = match v with | None -> `Switch | Some v -> `Val v in let l = M.bindings map in `Node (x, List.map (fun (c, t') -> _tree_node (`Char c) [ to_tree t' ]) l) (* stack of actions for [above] and [below] *) type 'a alternative = | Yield of 'a * char_ difflist | Explore of 'a t * char_ difflist type direction = | Above | Below let rec explore ~dir k alt = match alt with | Yield (v, prefix) -> k (W.of_list (prefix []), v) | Explore (Empty, _) -> () | Explore (Cons (c, t), prefix) -> explore ~dir k (Explore (t, _difflist_add prefix c)) | Explore (Node (o, map), prefix) -> (* if above, yield value now *) (match o, dir with | Some v, Above -> k (W.of_list (prefix []), v) | _ -> ()); let seq = iter_of_map map in let seq = _iter_map (fun (c, t') -> Explore (t', _difflist_add prefix c)) seq in let l' = match o, dir with | _, Above -> _iter_append_list [] seq | None, Below -> _iter_append_list_rev [] seq | Some v, Below -> _iter_append_list_rev [ Yield (v, prefix) ] seq in List.iter (explore ~dir k) l' let _list_eq l1 l2 = try List.for_all2 (fun x y -> W.compare x y = 0) l1 l2 with Invalid_argument _ -> false let _key_to_list key = List.rev (_iter_append_list_rev [] (W.to_iter key)) (* range above (if [above = true]) or below a threshold . [p c c'] must return [true] if [c'], in the tree, meets some criterion w.r.t [c] which is a part of the key. *) let _half_range ~dir ~p key t k = (* at subtree [cur = Some (t,trail)] or [None], alternatives above [alternatives], and char [c] in [key]. *) let on_char (cur, alternatives) c = match cur with | None -> None, alternatives | Some (Empty, _) -> None, alternatives | Some (Cons (c', t'), trail) -> if W.compare c c' = 0 then Some (t', _difflist_add trail c), alternatives else None, alternatives | Some (Node (o, map), trail) -> (* if [dir=Below], [o]'s key is below [key] and the other alternatives in [map] *) let alternatives = match o, dir with | Some v, Below -> Yield (v, trail) :: alternatives | _ -> alternatives in let alternatives = let seq = iter_of_map map in let seq = _filter_map_iter (fun (c', t') -> if p ~cur:c ~other:c' then Some (Explore (t', _difflist_add trail c')) else None) seq in (* ordering: - Above: explore alternatives in increasing order - Below: explore alternatives in decreasing order *) match dir with | Above -> _iter_append_list alternatives seq | Below -> _iter_append_list_rev alternatives seq in (try let t' = M.find c map in Some (t', _difflist_add trail c), alternatives with Not_found -> None, alternatives) (* run through the current path (if any) and alternatives *) and finish (cur, alternatives) = (match cur, dir with | Some (t, prefix), Above -> (* subtree prefixed by input key, therefore above key *) _iter_prefix ~prefix (fun key' v -> k (key', v)) t | Some (Node (Some v, _), prefix), Below -> (* yield the value for key *) assert (_list_eq (prefix []) (_key_to_list key)); k (key, v) | Some _, _ | None, _ -> ()); List.iter (explore ~dir k) alternatives in let word = W.to_iter key in _fold_iter_and_then on_char ~finish (Some (t, _id), []) word let above key t = _half_range ~dir:Above ~p:(fun ~cur ~other -> W.compare cur other < 0) key t let below key t = _half_range ~dir:Below ~p:(fun ~cur ~other -> W.compare cur other > 0) key t end module type ORDERED = sig type t val compare : t -> t -> int end module MakeArray (X : ORDERED) = Make (struct type t = X.t array type char_ = X.t let compare = X.compare let to_iter a k = Array.iter k a let of_list = Array.of_list end) module MakeList (X : ORDERED) = Make (struct type t = X.t list type char_ = X.t let compare = X.compare let to_iter a k = List.iter k a let of_list l = l end) module String = Make (struct type t = string type char_ = char let compare = Char.compare let to_iter s k = String.iter k s let of_list l = let buf = Buffer.create (List.length l) in List.iter (fun c -> Buffer.add_char buf c) l; Buffer.contents buf end)