(* Copyright (c) 2013, Simon Cruanes All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *) (** {1 Lazy graph data structure} *) (** This module serves to represent directed graphs in a lazy fashion. Such a graph is always accessed from a given initial node (so only connected components can be represented by a single value of type ('v,'e) t). *) (** {2 Type definitions} *) type ('id, 'v, 'e) t = { eq : 'id -> 'id -> bool; hash : 'id -> int; force : 'id -> ('id, 'v, 'e) node; } (** Lazy graph structure. Vertices, that have unique identifiers of type 'id, are annotated with values of type 'v, and edges are annotated by type 'e. A graph is a function that maps each identifier to a label and some edges to other vertices, or to Empty if the identifier is not part of the graph. *) and ('id, 'v, 'e) node = | Empty | Node of 'id * 'v * ('e * 'id) Gen.t (** A single node of the graph, with outgoing edges *) and ('id, 'e) path = ('id * 'e * 'id) list (** A reverse path (from the last element of the path to the first). *) (** {2 Basic constructors} *) let empty = { eq=(==); hash=Hashtbl.hash; force = (fun _ -> Empty); } let singleton ?(eq=(=)) ?(hash=Hashtbl.hash) v label = let force v' = if eq v v' then Node (v, label, Gen.empty) else Empty in { force; eq; hash; } let make ?(eq=(=)) ?(hash=Hashtbl.hash) force = { eq; hash; force; } let from_enum ?(eq=(=)) ?(hash=Hashtbl.hash) ~vertices ~edges = failwith "from_enum: not implemented" let from_fun ?(eq=(=)) ?(hash=Hashtbl.hash) f = let force v = match f v with | None -> Empty | Some (l, edges) -> Node (v, l, Gen.of_list edges) in { eq; hash; force; } (** {2 Polymorphic map} *) type ('id, 'a) map = { map_is_empty : unit -> bool; map_mem : 'id -> bool; map_add : 'id -> 'a -> unit; map_get : 'id -> 'a; } let mk_map (type id) ~eq ~hash = let module H = Hashtbl.Make(struct type t = id let equal = eq let hash = hash end) in let h = H.create 3 in { map_is_empty = (fun () -> H.length h = 0); map_mem = (fun k -> H.mem h k); map_add = (fun k v -> H.replace h k v); map_get = (fun k -> H.find h k); } (** {2 Mutable concrete implementation} *) (** This is a general purpose eager implementation of graphs. It can be modified in place *) type ('id, 'v, 'e) graph = ('id, 'v, 'e) t (* alias *) module Mutable = struct type ('id, 'v, 'e) t = ('id, ('id, 'v, 'e) mut_node) map and ('id, 'v, 'e) mut_node = { mut_id : 'id; mutable mut_v : 'v; mutable mut_outgoing : ('e * 'id) list; } let create ?(eq=(=)) ~hash = let map = mk_map ~eq ~hash in let force v = try let node = map.map_get v in Node (v, node.mut_v, Gen.of_list node.mut_outgoing) with Not_found -> Empty in let graph = { eq; hash; force; } in map, graph let add_vertex map id v = if not (map.map_mem id) then let node = { mut_id=id; mut_v=v; mut_outgoing=[]; } in map.map_add id node let add_edge map v1 e v2 = let n1 = map.map_get v1 in n1.mut_outgoing <- (e, v2) :: n1.mut_outgoing; () end (** {2 Traversals} *) (** {3 Full interface to traversals} *) module Full = struct type ('id, 'v, 'e) traverse_event = | EnterVertex of 'id * 'v * int * ('id, 'e) path (* unique ID, trail *) | ExitVertex of 'id (* trail *) | MeetEdge of 'id * 'e * 'id * edge_type (* edge *) and edge_type = | EdgeForward (* toward non explored vertex *) | EdgeBackward (* toward the current trail *) | EdgeTransverse (* toward a totally explored part of the graph *) (* helper type *) type ('id,'e) todo_item = | FullEnter of 'id * ('id, 'e) path | FullExit of 'id | FullFollowEdge of ('id, 'e) path (** Is [v] part of the [path]? *) let rec mem_path ~eq path v = match path with | (v',_,v'')::path' -> (eq v v') || (eq v v'') || (mem_path ~eq path' v) | [] -> false let bfs_full graph vertices = fun () -> let explored = mk_map ~eq:graph.eq ~hash:graph.hash in let id = ref 0 in let q = Queue.create () in (* queue of nodes to explore *) Gen.iter (fun v -> Queue.push (FullEnter (v,[])) q) vertices; let rec next () = if Queue.is_empty q then raise Gen.EOG else match Queue.pop q with | FullEnter (v', path) -> if explored.map_mem v' then next () else begin match graph.force v' with | Empty -> next () | Node (_, label, edges) -> explored.map_add v' (); (* explore neighbors *) Gen.iter (fun (e,v'') -> let path' = (v'',e,v') :: path in Queue.push (FullFollowEdge path') q) edges; (* exit node afterward *) Queue.push (FullExit v') q; (* return this vertex *) let i = !id in incr id; EnterVertex (v', label, i, path) end | FullExit v' -> ExitVertex v' | FullFollowEdge [] -> assert false | FullFollowEdge (((v'', e, v') :: path) as path') -> (* edge path .... v' --e--> v'' *) if explored.map_mem v'' then if mem_path ~eq:graph.eq path v'' then MeetEdge (v'', e, v', EdgeBackward) else MeetEdge (v'', e, v', EdgeTransverse) else begin (* explore this edge *) Queue.push (FullEnter (v'', path')) q; MeetEdge (v'', e, v', EdgeForward) end in next let dfs_full graph vertices = fun () -> let explored = mk_map ~eq:graph.eq ~hash:graph.hash in let id = ref 0 in let s = Stack.create () in (* stack of nodes to explore *) Gen.iter (fun v -> Stack.push (FullEnter (v,[])) s) vertices; let rec next () = if Stack.is_empty s then raise Gen.EOG else match Stack.pop s with | FullExit v' -> ExitVertex v' | FullEnter (v', path) -> if explored.map_mem v' then next () (* explore the node now *) else begin match graph.force v' with | Empty -> next () | Node (_, label, edges) -> explored.map_add v' (); (* prepare to exit later *) Stack.push (FullExit v') s; (* explore neighbors *) Gen.iter (fun (e,v'') -> Stack.push (FullFollowEdge ((v'', e, v') :: path)) s) edges; (* return this vertex *) let i = !id in incr id; EnterVertex (v', label, i, path) end | FullFollowEdge [] -> assert false | FullFollowEdge (((v'', e, v') :: path) as path') -> (* edge path .... v' --e--> v'' *) if explored.map_mem v'' then if mem_path ~eq:graph.eq path v'' then MeetEdge (v'', e, v', EdgeBackward) else MeetEdge (v'', e, v', EdgeTransverse) else begin (* explore this edge *) Stack.push (FullEnter (v'', path')) s; MeetEdge (v'', e, v', EdgeForward) end in next end let bfs graph v = Gen.filterMap (function | Full.EnterVertex (v, l, i, _) -> Some (v, l, i) | _ -> None) (Full.bfs_full graph (Gen.singleton v)) let dfs graph v = Gen.filterMap (function | Full.EnterVertex (v, l, i, _) -> Some (v, l, i) | _ -> None) (Full.dfs_full graph (Gen.singleton v)) (** {3 Mutable heap (taken from heap.ml to avoid dependencies)} *) module Heap = struct type 'a t = { mutable tree : 'a tree; cmp : 'a -> 'a -> int; } (** A splay tree heap with the given comparison function *) and 'a tree = | Empty | Node of ('a tree * 'a * 'a tree) (** A splay tree containing values of type 'a *) let empty ~cmp = { tree = Empty; cmp; } let is_empty h = match h.tree with | Empty -> true | Node _ -> false (** Partition the tree into (elements <= pivot, elements > pivot) *) let rec partition ~cmp pivot tree = match tree with | Empty -> Empty, Empty | Node (a, x, b) -> if cmp x pivot <= 0 then begin match b with | Empty -> (tree, Empty) | Node (b1, y, b2) -> if cmp y pivot <= 0 then let small, big = partition ~cmp pivot b2 in Node (Node (a, x, b1), y, small), big else let small, big = partition ~cmp pivot b1 in Node (a, x, small), Node (big, y, b2) end else begin match a with | Empty -> (Empty, tree) | Node (a1, y, a2) -> if cmp y pivot <= 0 then let small, big = partition ~cmp pivot a2 in Node (a1, y, small), Node (big, x, b) else let small, big = partition ~cmp pivot a1 in small, Node (big, y, Node (a2, x, b)) end (** Insert the element in the tree *) let insert h x = let small, big = partition ~cmp:h.cmp x h.tree in let tree' = Node (small, x, big) in h.tree <- tree' (** Get minimum value and remove it from the tree *) let pop h = let rec delete_min tree = match tree with | Empty -> raise Not_found | Node (Empty, x, b) -> x, b | Node (Node (Empty, x, b), y, c) -> x, Node (b, y, c) (* rebalance *) | Node (Node (a, x, b), y, c) -> let m, a' = delete_min a in m, Node (a', x, Node (b, y, c)) in let m, tree' = delete_min h.tree in h.tree <- tree'; m end (** Shortest path from the first node to the second one, according to the given (positive!) distance function. The path is reversed, ie, from the destination to the source. The int is the distance. *) let disjktra graph ?(distance=fun v1 e v2 -> 1) v1 v2 = failwith "not implemented" (** {2 Lazy transformations} *) let union ?(combine=fun x y -> x) g1 g2 = let force v = match g1.force v, g2.force v with | Empty, Empty -> Empty | ((Node _) as n), Empty -> n | Empty, ((Node _) as n) -> n | Node (_, l1, e1), Node (_, l2, e2) -> Node (v, combine l1 l2, Gen.append e1 e2) in { eq=g1.eq; hash=g1.hash; force; } let map ~vertices ~edges g = let force v = match g.force v with | Empty -> Empty | Node (_, l, edges_enum) -> let edges_enum' = Gen.map (fun (e,v') -> (edges e), v') edges_enum in Node (v, vertices l, edges_enum') in { eq=g.eq; hash=g.hash; force; } let filter ?(vertices=(fun v l -> true)) ?(edges=fun v1 e v2 -> true) g = let force v = match g.force v with | Empty -> Empty | Node (_, l, edges_enum) when vertices v l -> (* filter out edges *) let edges_enum' = Gen.filter (fun (e,v') -> edges v e v') edges_enum in Node (v, l, edges_enum') | Node _ -> Empty (* filter out this vertex *) in { eq=g.eq; hash=g.hash; force; } let product g1 g2 = let force (v1,v2) = match g1.force v1, g2.force v2 with | Empty, _ | _, Empty -> Empty | Node (_, l1, edges1), Node (_, l2, edges2) -> (* product of edges *) let edges = Gen.product edges1 edges2 in let edges = Gen.map (fun ((e1,v1'),(e2,v2')) -> ((e1,e2),(v1',v2'))) edges in Node ((v1,v2), (l1,l2), edges) and eq (v1,v2) (v1',v2') = g1.eq v1 v1' && g2.eq v2 v2' and hash (v1,v2) = ((g1.hash v1) * 65599) + g2.hash v2 in { eq; hash; force; } module Infix = struct let (++) g1 g2 = union ?combine:None g1 g2 end module Dot = struct type attribute = [ | `Color of string | `Shape of string | `Weight of int | `Style of string | `Label of string | `Other of string * string ] (** Dot attribute *) (** Print an enum of Full.traverse_event *) let pp_enum ?(eq=(=)) ?(hash=Hashtbl.hash) ~name formatter events = (* print an attribute *) let print_attribute formatter attr = match attr with | `Color c -> Format.fprintf formatter "color=%s" c | `Shape s -> Format.fprintf formatter "shape=%s" s | `Weight w -> Format.fprintf formatter "weight=%d" w | `Style s -> Format.fprintf formatter "style=%s" s | `Label l -> Format.fprintf formatter "label=\"%s\"" l | `Other (name, value) -> Format.fprintf formatter "%s=\"%s\"" name value (* map from vertices to integers *) and get_id = let count = ref 0 in let m = mk_map ~eq ~hash in fun vertex -> try m.map_get vertex with Not_found -> let n = !count in incr count; m.map_add vertex n; n in (* the unique name of a vertex *) let pp_vertex formatter v = Format.fprintf formatter "vertex_%d" (get_id v) in (* print preamble *) Format.fprintf formatter "@[digraph %s {@;" name; (* traverse *) Gen.iter (function | Full.EnterVertex (v, attrs, _, _) -> Format.fprintf formatter " @[%a [%a];@]@." pp_vertex v (Gen.pp ~sep:"," print_attribute) (Gen.of_list attrs) | Full.ExitVertex _ -> () | Full.MeetEdge (v2, attrs, v1, _) -> Format.fprintf formatter " @[%a -> %a [%a];@]@." pp_vertex v1 pp_vertex v2 (Gen.pp ~sep:"," print_attribute) (Gen.of_list attrs)) events; (* close *) Format.fprintf formatter "}@]@;@?"; () let pp ~name graph formatter vertices = let enum = Full.bfs_full graph vertices in pp_enum ~eq:graph.eq ~hash:graph.hash ~name formatter enum end (** {2 Example of graphs} *) let divisors_graph = let rec divisors acc j i = if j = i then acc else let acc' = if (i mod j = 0) then j :: acc else acc in divisors acc' (j+1) i in let force i = if i > 2 then let l = divisors [] 2 i in let edges = Gen.map (fun i -> (), i) (Gen.of_list l) in Node (i, i, edges) else Node (i, i, Gen.empty) in make force let collatz_graph = let force i = if i mod 2 = 0 then Node (i, i, Gen.singleton ((), i / 2)) else Node (i, i, Gen.singleton ((), i * 3 + 1)) in make force