ocaml-containers/src/data/CCRingBuffer.ml

856 lines
25 KiB
OCaml

(* This file is free software, part of containers. See file "license" for more details. *)
(* Copyright (C) 2015 Simon Cruanes, Carmelo Piccione *)
(** Generic Circular Buffer for IO, with bulk operations.
The bulk operations (e.g. based on {!Array.blit} or {!Bytes.blit})
are more efficient than item-by-item copy.
See https://en.wikipedia.org/wiki/Circular_buffer for an overview. *)
module Array = struct
(** The abstract type for arrays *)
module type S = sig
(** The element type *)
type elt
(** The type of an array instance *)
type t
val dummy : elt
(** A dummy element used for empty slots in the array
@since 2.4 *)
val create : int -> t
(** Make an array of the given size, filled with dummy elements *)
val length: t -> int
(** [length t] gets the total number of elements currently in [t] *)
val get: t -> int -> elt
(** [get t i] gets the element at position [i] *)
val set: t -> int -> elt -> unit
(** [set t i e] sets the element at position [i] to [e] *)
val sub: t -> int -> int -> t
(** [sub t i len] gets the subarray of [t] from
position [i] to [i + len] *)
val copy : t -> t
(** [copy t] makes a fresh copy of the array [t] *)
val blit : t -> int -> t -> int -> int -> unit
(** [blit t s arr i len] copies [len] elements from [arr] starting at [i]
to position [s] from [t] *)
val iter : (elt -> unit) -> t -> unit
(** [iter f t] iterates over the array [t] invoking [f] with
the current element, in array order *)
end
module Byte :
S with type elt = char and type t = Bytes.t = struct
type elt = char
let dummy = '\x00'
include Bytes
end
module Make(Elt:sig type t val dummy : t end) :
S with type elt = Elt.t and type t = Elt.t array = struct
type elt = Elt.t
type t = Elt.t array
let dummy = Elt.dummy
let create size = Array.make size Elt.dummy
let length = Array.length
let get = Array.get
let set = Array.set
let copy = Array.copy
let blit = Array.blit
let iter = Array.iter
let sub = Array.sub
end
end
module type S = sig
(** The module type of Array for this ring buffer *)
module Array : Array.S
(** Defines the bounded ring buffer type *)
type t
(** Raised in querying functions when the buffer is empty *)
exception Empty
val create : int -> t
(** [create size] creates a new bounded buffer with given size.
The underlying array is allocated immediately and no further (large)
allocation will happen from now on.
@raise Invalid_argument if the arguments is [< 1] *)
val copy : t -> t
(** Make a fresh copy of the buffer. *)
val capacity : t -> int
(** Length of the inner buffer. *)
val length : t -> int
(** Number of elements currently stored in the buffer. *)
val is_full : t -> bool
(** true if pushing an element would erase another element.
@since 1.3 *)
val blit_from : t -> Array.t -> int -> int -> unit
(** [blit_from buf from_buf o len] copies the slice [o, ... o + len - 1] from
a input buffer [from_buf] to the end of the buffer.
If the slice is too large for the buffer, only the last part of the array
will be copied.
@raise Invalid_argument if [o,len] is not a valid slice of [s] *)
val blit_into : t -> Array.t -> int -> int -> int
(** [blit_into buf to_buf o len] copies at most [len] elements from [buf]
into [to_buf] starting at offset [o] in [s].
@return the number of elements actually copied ([min len (length buf)]).
@raise Invalid_argument if [o,len] is not a valid slice of [s]. *)
val append : t -> into:t -> unit
(** [append b ~into] copies all data from [b] and adds it at the
end of [into]. Erases data of [into] if there is not enough room. *)
val to_list : t -> Array.elt list
(** Extract the current content into a list *)
val clear : t -> unit
(** Clear the content of the buffer. Doesn't actually destroy the content. *)
val is_empty :t -> bool
(** Is the buffer empty (i.e. contains no elements)? *)
val junk_front : t -> unit
(** Drop the front element from [t].
@raise Empty if the buffer is already empty. *)
val junk_back : t -> unit
(** Drop the back element from [t].
@raise Empty if the buffer is already empty. *)
val skip : t -> int -> unit
(** [skip b len] removes [len] elements from the front of [b].
@raise Invalid_argument if [len > length b]. *)
val iter : t -> f:(Array.elt -> unit) -> unit
(** [iter b ~f] calls [f i t] for each element [t] in [buf] *)
val iteri : t -> f:(int -> Array.elt -> unit) -> unit
(** [iteri b ~f] calls [f i t] for each element [t] in [buf], with [i]
being its relative index within [buf]. *)
val get_front : t -> int -> Array.elt
(** [get_front buf i] returns the [i]-th element of [buf] from the front, ie
the one returned by [take_front buf] after [i-1] calls to [junk_front buf].
@raise Invalid_argument if the index is invalid (> [length buf]) *)
val get_back : t -> int -> Array.elt
(** [get_back buf i] returns the [i]-th element of [buf] from the back, ie
the one returned by [take_back buf] after [i-1] calls to [junk_back buf].
@raise Invalid_argument if the index is invalid (> [length buf]) *)
val push_back : t -> Array.elt -> unit
(** Push value at the back of [t].
If [t.bounded=false], the buffer will grow as needed,
otherwise the oldest elements are replaced first. *)
val peek_front : t -> Array.elt option
(** First value from front of [t], without modification. *)
val peek_front_exn : t -> Array.elt
(** First value from front of [t], without modification.
@raise Empty if buffer is empty.
@since 1.3 *)
val peek_back : t -> Array.elt option
(** Get the last value from back of [t], without modification. *)
val peek_back_exn : t -> Array.elt
(** Get the last value from back of [t], without modification.
@raise Empty if buffer is empty.
@since 1.3 *)
val take_back : t -> Array.elt option
(** Take and remove the last value from back of [t], if any *)
val take_back_exn : t -> Array.elt
(** Take and remove the last value from back of [t].
@raise Empty if buffer is already empty. *)
val take_front : t -> Array.elt option
(** Take and remove the first value from front of [t], if any *)
val take_front_exn : t -> Array.elt
(** Take and remove the first value from front of [t].
@raise Empty if buffer is already empty. *)
val of_array : Array.t -> t
(** Create a buffer from an initial array, but doesn't take ownership
of it (stills allocates a new internal array)
@since 0.11 *)
val to_array : t -> Array.t
(** Create an array from the elements, in order.
@since 0.11 *)
end
(*$inject
open Q.Gen
let g_char = map Char.chr (Char.code 'A' -- Char.code 'z')
let g_str = string_size ~gen:g_char (0--10)
let a_str = Q.set_gen g_str Q.string
*)
module MakeFromArray(A:Array.S) : S with module Array = A = struct
module Array = A
type t = {
mutable start : int;
mutable stop : int; (* excluded *)
buf : Array.t;
}
exception Empty
let create size =
if size < 1 then invalid_arg "CCRingBuffer.create";
{ start=0;
stop=0;
buf = A.create (size+1); (* keep room for extra slot *)
}
let copy b =
{ b with buf=A.copy b.buf; }
(*$T
let b = Byte.of_array (Bytes.of_string "abc") in \
let b' = Byte.copy b in \
Byte.clear b; \
Byte.to_array b' = (Bytes.of_string "abc") && Byte.to_array b = Bytes.empty
*)
let capacity b =
let len = A.length b.buf in
match len with 0 -> 0 | l -> l - 1
(*$Q
a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \
Byte.capacity b >= s_len)
*)
let length b =
if b.stop >= b.start
then b.stop - b.start
else (A.length b.buf - b.start) + b.stop
let is_full b = length b + 1 = Array.length b.buf
let next_ b i =
let j = i+1 in
if j = A.length b.buf then 0 else j
let incr_start_ b = b.start <- next_ b b.start
let incr_stop_ b = b.stop <- next_ b b.stop
let push_back b e =
A.set b.buf b.stop e;
incr_stop_ b;
if b.start = b.stop then incr_start_ b; (* overwritten one element *)
()
let blit_from b from_buf o len =
if len = 0 then ()
else if o + len > A.length from_buf then invalid_arg "CCRingBuffer.blit_from"
else (
for i=o to o+len-1 do
push_back b (A.get from_buf i)
done
)
(*$Q
a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \
let b' = Byte.copy b in \
try Byte.iteri b ~f:(fun i c -> if Byte.get_front b' i <> c then raise Exit); true with Exit -> false)
*)
(*$Q
a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \
Byte.push_back b 'X'; \
Byte.peek_back_exn b = 'X')
*)
(*$Q
(Q.pair a_str a_str) (fun (s,s') -> \
let b = Byte.create (max (String.length s+String.length s') 64) in \
let s = Bytes.of_string s in let s' = Bytes.of_string s' in \
Byte.blit_from b s 0 (Bytes.length s); \
Byte.blit_from b s' 0 (Bytes.length s'); \
Byte.length b = Bytes.length s + Bytes.length s')
*)
(*$Q
(Q.pair a_str a_str) (fun (s,s') -> \
let s = Bytes.of_string s in let s' = Bytes.of_string s' in \
let b = Byte.create (max (Bytes.length s + Bytes.length s') 64) in \
Byte.blit_from b s 0 (Bytes.length s); \
Byte.blit_from b s' 0 (Bytes.length s'); \
Byte.length b = Bytes.length s + Bytes.length s')
*)
let blit_into b to_buf o len =
if o+len > A.length to_buf then (
invalid_arg "CCRingBuffer.blit_into";
);
if b.stop >= b.start then (
let n = min (b.stop - b.start) len in
A.blit b.buf b.start to_buf o n;
n
) else (
let len_end = A.length b.buf - b.start in
A.blit b.buf b.start to_buf o (min len_end len);
if len_end >= len
then len (* done *)
else (
let n = min b.stop (len - len_end) in
A.blit b.buf 0 to_buf (o+len_end) n;
n + len_end
)
)
(*$Q
a_str (fun s -> let s = Bytes.of_string s in \
let b = Byte.create (max 64 (Bytes.length s)) in \
Byte.blit_from b s 0 (Bytes.length s); \
let to_buf = Bytes.create (Bytes.length s) in \
let len = Byte.blit_into b to_buf 0 (Bytes.length s) in \
to_buf = s && len = Bytes.length s)
*)
let is_empty b = b.start = b.stop
(*$Q
a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \
Byte.skip b s_len; \
Byte.is_empty b)
*)
let take_front_exn b =
if b.start = b.stop then raise Empty;
let c = A.get b.buf b.start in
A.set b.buf b.start A.dummy;
b.start <- next_ b b.start;
c
let take_front b = try Some (take_front_exn b) with Empty -> None
(*$Q
a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \
try let front = Byte.take_front_exn b in \
front = Bytes.get s 0 with Byte.Empty -> s_len = 0)
*)
let take_back_exn b =
if b.start = b.stop then raise Empty;
if b.stop = 0
then b.stop <- A.length b.buf - 1
else b.stop <- b.stop - 1;
let c = A.get b.buf b.stop in
A.set b.buf b.stop A.dummy;
c
let take_back b = try Some (take_back_exn b) with Empty -> None
(*$Q
a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \
try let back = Byte.take_back_exn b in \
back = Bytes.get s (Bytes.length s - 1) \
with Byte.Empty -> s_len = 0)
*)
let junk_front b =
if b.start = b.stop then raise Empty;
A.set b.buf b.start A.dummy;
if b.start + 1 = A.length b.buf
then b.start <- 0
else b.start <- b.start + 1
(*$Q
a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \
try let () = Byte.junk_front b in \
s_len - 1 = Byte.length b with Byte.Empty -> s_len = 0)
*)
let junk_back b =
if b.start = b.stop then raise Empty;
if b.stop = 0
then b.stop <- A.length b.buf - 1
else b.stop <- b.stop - 1;
A.set b.buf b.stop A.dummy
(*$Q
a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \
try let () = Byte.junk_back b in \
s_len - 1 = Byte.length b with Byte.Empty -> s_len = 0)
*)
let skip b len =
if len > length b then (
invalid_arg "CCRingBuffer.skip";
);
for _ = 1 to len do
junk_front b
done
(*$Q
(Q.pair a_str a_str) (fun (s,s') -> \
let s = Bytes.of_string s in let s' = Bytes.of_string s' in \
let b = Byte.create (max (Bytes.length s+Bytes.length s') 64) in \
Byte.blit_from b s 0 (Bytes.length s); \
Byte.blit_from b s' 0 (Bytes.length s'); \
let h = Bytes.of_string "hello world" in \
Byte.blit_from b h 0 (Bytes.length h); (* big enough *) \
let l = Byte.length b in let l' = l/2 in Byte.skip b l'; \
Byte.length b + l' = l)
*)
let clear b =
skip b (length b)
(*$Q
a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \
Byte.clear b; \
Byte.length b = 0)
*)
let iter b ~f =
if b.stop >= b.start
then for i = b.start to b.stop - 1 do f (A.get b.buf i) done
else (
for i = b.start to A.length b.buf -1 do f (A.get b.buf i) done;
for i = 0 to b.stop - 1 do f (A.get b.buf i) done;
)
let iteri b ~f =
if b.stop >= b.start
then for i = b.start to b.stop - 1 do f i (A.get b.buf i) done
else (
for i = b.start to A.length b.buf -1 do f i (A.get b.buf i) done;
for i = 0 to b.stop - 1 do f i (A.get b.buf i) done;
)
(*$Q
a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \
try Byte.iteri b ~f:(fun i c -> if Byte.get_front b i <> c then raise Exit); \
true with Exit -> false)
*)
let get b i =
if b.stop >= b.start
then (
if i >= b.stop - b.start then (
invalid_arg "CCRingBuffer.get"
) else A.get b.buf (b.start + i)
) else (
let len_end = A.length b.buf - b.start in
if i < len_end then A.get b.buf (b.start + i)
else if i - len_end > b.stop then (
invalid_arg "CCRingBuffer.get"
) else A.get b.buf (i - len_end)
)
let get_front b i =
if is_empty b then (
invalid_arg "CCRingBuffer.get_front"
) else get b i
(*$Q
(Q.pair Q.small_int a_str) (fun (i, s) -> \
let s = Bytes.of_string (s ^ " ") in \
let s_len = Bytes.length s in \
let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \
let index = abs (i mod Byte.length b) in \
let front = Byte.get_front b index in \
front = Bytes.get s index)
*)
let get_back b i =
let offset = ((length b) - i - 1) in
if offset < 0 then (
invalid_arg "CCRingBuffer.get_back"
) else get b offset
(*$Q
(Q.pair Q.small_int a_str) (fun (i, s) -> \
let s = Bytes.of_string (s ^ " ") in \
let s_len = Bytes.length s in \
let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \
let index = abs (i mod Byte.length b) in \
let back = Byte.get_back b index in \
back = Bytes.get s (s_len - index - 1))
*)
let to_list b =
let len = length b in
let rec build l i =
if i < 0 then l else build ((get_front b i)::l) (i-1)
in
build [] (len-1)
(*$Q
a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \
let l = Byte.to_list b in \
let explode s = let rec exp i l = \
if i < 0 then l else exp (i - 1) (Bytes.get s i :: l) in \
exp (Bytes.length s - 1) [] in \
explode s = l)
*)
(* TODO: more efficient version, with one or two blit *)
let append b ~into =
iter b ~f:(push_back into)
let peek_front_exn b =
if is_empty b then raise Empty
else A.get b.buf b.start
let peek_front b = try Some (peek_front_exn b) with Empty -> None
(*$Q
a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \
try let back = Byte.peek_front_exn b in \
back = Bytes.get s 0 with Byte.Empty -> s_len = 0)
*)
let peek_back_exn b = if is_empty b
then raise Empty
else (
let i = if b.stop = 0 then A.length b.buf - 1 else b.stop-1 in
A.get b.buf i
)
let peek_back b = try Some (peek_back_exn b) with Empty -> None
(*$Q
a_str (fun s -> let s = Bytes.of_string s in \
let s_len = Bytes.length s in \
let b = Byte.create (max s_len 64) in \
Byte.blit_from b s 0 s_len; \
try let back = Byte.peek_back_exn b in \
back = Bytes.get s (s_len - 1) with Byte.Empty -> s_len = 0)
*)
let of_array a =
let b = create (max (A.length a) 16) in
blit_from b a 0 (A.length a);
b
let to_array b =
let a = A.create (length b) in
let n = blit_into b a 0 (length b) in
assert (n = length b);
a
(*$Q
a_str (fun s -> let s = Bytes.of_string s in \
let b = Byte.of_array s in let s' = Byte.to_array b in \
s = s')
*)
end
module Byte = MakeFromArray(Array.Byte)
module Make(Elt:sig
type t
val dummy : t
end) = MakeFromArray(Array.Make(Elt))
(*$inject
module BI = CCRingBuffer.Make(struct type t = int let dummy=0 end)
*)
(* try to trigger an error on resize
see issue #126 *)
(*$R
let b = BI.create 50 in
let st = Random.State.make [| 0 |] in
for _i = 1 to 100_000 do
if Random.State.float st 1.0 < 0.5 then
BI.push_back b 0
else
let _ = BI.take_front b in ()
done
*)
(* Test against reference implementation (lists) on a succession of
operations.
Remarks on semantics:
JUNK_FRONT/JUNK_BACK: try to remove if not empty
SKIP: if at least n elements, skip; else nop
*)
(*$inject
module BS = CCRingBuffer.Byte
type op =
| Push_back of char
| Take_front
| Take_back
| Peek_front
| Peek_back
| Junk_front
| Junk_back
| Skip of int
| Blit of string * int * int
| Z_if_full
let str_of_op = function
| Push_back c -> Printf.sprintf "push_back(%C)" c
| Take_front -> Printf.sprintf "take_front"
| Take_back -> Printf.sprintf "take_back"
| Peek_front -> Printf.sprintf "peek_front"
| Peek_back -> Printf.sprintf "peek_back"
| Junk_front -> Printf.sprintf "junk_front"
| Junk_back -> Printf.sprintf "junk_back"
| Skip n -> Printf.sprintf "skip(%d)" n
| Blit (s,i,len) -> Printf.sprintf "blit(%S,%d,%d)" s i len
| Z_if_full -> "zero_if_full"
let push_back c = Push_back c
let skip n = assert (n>=0); Skip n
let blit s i len =
if i<0 || len<0 || i+len > String.length s then (
failwith ("wrong blit: " ^ str_of_op (Blit (s,i,len)));
);
Blit (s,i,len)
let shrink_op =
let open Q.Iter in
function
| Push_back c -> Q.Shrink.char c >|= push_back
| Take_front | Take_back | Junk_back | Junk_front
| Z_if_full | Peek_front | Peek_back
-> empty
| Skip n -> Q.Shrink.int n >|= skip
| Blit (s,i,len) ->
let s_i =
Q.Shrink.int i >>= fun i' ->
assert (i' <= i && i' + len <= String.length s);
if i' <= 0 then empty else return (blit s i' len)
and s_len =
Q.Shrink.int len >>= fun len'->
assert (len' <= len && i + len' <= String.length s);
if len' <= 0 then empty else return (blit s i len')
and s_s =
Q.Shrink.string s >>= fun s' ->
if i+len > String.length s' then empty else return (blit s' i len)
in
append s_i (append s_len s_s)
let rec len_op size acc = function
| Push_back _ -> min size (acc + 1)
| Take_front | Take_back | Junk_front | Junk_back -> max (acc-1) 0
| Skip n -> if acc >= n then acc-n else acc
| Z_if_full | Peek_front | Peek_back -> acc
| Blit (_,_,len) -> min size (acc + len)
let apply_op b = function
| Push_back c -> BS.push_back b c; None
| Take_front -> BS.take_front b
| Take_back -> BS.take_back b
| Junk_front -> (try BS.junk_front b with BS.Empty -> ()); None
| Junk_back -> (try BS.junk_back b with BS.Empty -> ()); None
| Peek_front -> BS.peek_front b
| Peek_back -> BS.peek_back b
| Skip n -> if n <= BS.length b then BS.skip b n; None
| Blit (s,i,len) ->
assert(i+len <= String.length s);
BS.blit_from b (Bytes.unsafe_of_string s) i len; None
| Z_if_full -> if BS.is_full b then Some '0' else None
let gen_op =
let open Q.Gen in
let g_blit =
string_size ~gen:g_char (5--20) >>= fun s ->
(0 -- String.length s) >>= fun len ->
assert (len >= 0 && len <= String.length s);
(0--(String.length s-len)) >|= fun i ->
blit s i len
in
frequency
[ 3, return Take_back;
3, return Take_front;
1, return Junk_back;
1, return Junk_front;
1, return Peek_front;
1, return Peek_back;
2, g_blit;
1, (0--5 >|= skip);
2, map push_back g_char;
1, return Z_if_full;
]
let arb_op =
Q.make
~shrink:shrink_op
~print:str_of_op
gen_op
let arb_ops = Q.list_of_size Q.Gen.(0 -- 20) arb_op
module L_impl = struct
type t = {
size: int;
mutable l: char list;
}
let create size = {size; l=[]}
let normalize_ b =
let n = List.length b.l in
if n>b.size then b.l <- CCList.drop (n-b.size) b.l
let push_back b c = b.l <- b.l @ [c]; normalize_ b
let take_front b = match b.l with
| [] -> None
| c :: l -> b.l <- l; Some c
let peek_front b = match b.l with [] -> None | x::_ -> Some x
let take_back b =
let n = List.length b.l in
if n=0 then None
else (
let init, last = CCList.take_drop (n-1) b.l in
let x = List.hd last in
b.l <- init;
Some x
)
let peek_back b = match b.l with [] -> None | l -> Some (List.hd (List.rev l))
let junk_front b = ignore (take_front b)
let junk_back b = ignore (take_back b)
let skip b n =
if n <= List.length b.l then (
CCInt.range' 0 n (fun _ -> junk_front b)
)
let blit b s i len =
for j=i to i+len-1 do push_back b (String.get s j) done
let apply_op b = function
| Push_back c -> push_back b c; None
| Take_front -> take_front b
| Take_back -> take_back b
| Peek_front -> peek_front b
| Peek_back -> peek_back b
| Junk_back -> junk_back b; None
| Junk_front -> junk_front b; None
| Skip n -> skip b n; None
| Blit (s,i,len) -> blit b s i len; None
| Z_if_full -> if b.size = List.length b.l then Some '0' else None
let to_list b = b.l
end
*)
(* check that a lot of operations can be applied without failure,
and that the result has correct length *)
(*$QR & ~count:3_000
arb_ops (fun ops ->
let size = 64 in
let b = BS.create size in
List.iter (fun o-> ignore (apply_op b o)) ops;
BS.length b = List.fold_left (len_op size) 0 ops)
*)
(* check identical behavior with list implem *)
(*$QR & ~count:3_000
arb_ops (fun ops ->
let size = 64 in
let b = BS.create size in
let l = L_impl.create size in
let l1 = CCList.filter_map (apply_op b) ops in
let l2 = CCList.filter_map (L_impl.apply_op l) ops in
l1=l2 && BS.to_list b = L_impl.to_list l)
*)
(* check that deleted elements can be GCed *)
(*$inject
module BO = CCRingBuffer.Make(struct type t = int option let dummy=None end)
let make_bo () =
let b = BO.create 1000 in
for i = 1 to BO.capacity b do
BO.push_back b (Some i)
done;
b
let test_no_major_blocks clear =
Gc.full_major ();
let live_blocks_before = (Gc.stat ()).live_blocks in
let b = make_bo () in
clear b;
Gc.full_major ();
let live_blocks_after = (Gc.stat ()).live_blocks in
assert (BO.length b = 0);
let diff = live_blocks_after - live_blocks_before in
diff < BO.capacity b / 2
*)
(*$T
test_no_major_blocks (fun b -> for _ = 1 to BO.length b do BO.junk_front b; done)
test_no_major_blocks (fun b -> for _ = 1 to BO.length b do BO.junk_back b; done)
test_no_major_blocks (fun b -> for _ = 1 to BO.length b do ignore (BO.take_front b); done)
test_no_major_blocks (fun b -> for _ = 1 to BO.length b do ignore (BO.take_back b); done)
test_no_major_blocks (fun b -> BO.skip b (BO.length b))
test_no_major_blocks (fun b -> BO.clear b)
*)