ocaml-containers/src/data/CCWBTree.ml
Fardale 01da25cead break: change pp functions to take unit printer for sep/stop/start
sep/stop/start -> pp_sep/pp_stop/pp_start
string -> unit printer
2020-07-27 22:57:29 -04:00

612 lines
17 KiB
OCaml
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

(* This file is free software, part of containers. See file "license" for more details. *)
(** {1 Weight-Balanced Tree}
Most of this comes from "implementing sets efficiently in a functional language",
Stephen Adams.
The coefficients 5/2, 3/2 for balancing come from "balancing weight-balanced trees"
*)
(*$inject
module M = Make(CCInt)
type op =
| Add of int * int
| Remove of int
| Remove_min
let gen_op = CCRandom.(choose_exn
[ return Remove_min
; map (fun x->Remove x) small_int
; pure (fun x y->Add (x,y)) <*> small_int <*> small_int])
and pp_op =let open Printf in
function Add (x,y) -> sprintf "Add %d %d" x y
| Remove x -> sprintf "Remove %d" x | Remove_min -> "Remove_min"
let apply_ops l m = List.fold_left
(fun m -> function
| Add (i,b) -> M.add i b m
| Remove i -> M.remove i m
| Remove_min ->
try let _, _, m' = M.extract_min m in m' with Not_found -> m
) m l
let op = Q.make ~print:pp_op gen_op
let _list_uniq = CCList.sort_uniq ~cmp:(CCFun.compose_binop fst Stdlib.compare)
*)
(*$Q & ~count:200
Q.(list op) (fun l -> let m = apply_ops l M.empty in M.balanced m)
*)
type 'a iter = ('a -> unit) -> unit
type 'a gen = unit -> 'a option
type 'a printer = Format.formatter -> 'a -> unit
module type ORD = sig
type t
val compare : t -> t -> int
end
module type KEY = sig
include ORD
val weight : t -> int
end
(** {2 Signature} *)
module type S = sig
type key
type +'a t
val empty : 'a t
val is_empty : _ t -> bool
val singleton : key -> 'a -> 'a t
val mem : key -> _ t -> bool
val get : key -> 'a t -> 'a option
val get_exn : key -> 'a t -> 'a
(** @raise Not_found if the key is not present *)
val nth : int -> 'a t -> (key * 'a) option
(** [nth i m] returns the [i]-th [key, value] in the ascending
order. Complexity is [O(log (cardinal m))] *)
val nth_exn : int -> 'a t -> key * 'a
(** @raise Not_found if the index is invalid *)
val get_rank : key -> 'a t -> [`At of int | `After of int | `First]
(** [get_rank k m] looks for the rank of [k] in [m], i.e. the index
of [k] in the sorted list of bindings of [m].
[let (`At n) = get_rank k m in nth_exn n m = get m k] should hold.
@since 1.4 *)
val add : key -> 'a -> 'a t -> 'a t
val remove : key -> 'a t -> 'a t
val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
(** [update k f m] calls [f (Some v)] if [get k m = Some v], [f None]
otherwise. Then, if [f] returns [Some v'] it binds [k] to [v'],
if [f] returns [None] it removes [k] *)
val cardinal : _ t -> int
val weight : _ t -> int
val fold : f:('b -> key -> 'a -> 'b) -> x:'b -> 'a t -> 'b
val mapi : f:(key -> 'a -> 'b) -> 'a t -> 'b t
(** Map values, giving both key and value. Will use {!WORD.of_list} to rebuild keys.
@since 0.17
*)
val map : f:('a -> 'b) -> 'a t -> 'b t
(** Map values, giving only the value.
@since 0.17
*)
val iter : f:(key -> 'a -> unit) -> 'a t -> unit
val split : key -> 'a t -> 'a t * 'a option * 'a t
(** [split k t] returns [l, o, r] where [l] is the part of the map
with keys smaller than [k], [r] has keys bigger than [k],
and [o = Some v] if [k, v] belonged to the map *)
val merge : f:(key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
(** Like {!Map.S.merge} *)
val extract_min : 'a t -> key * 'a * 'a t
(** [extract_min m] returns [k, v, m'] where [k,v] is the pair with the
smallest key in [m], and [m'] does not contain [k].
@raise Not_found if the map is empty *)
val extract_max : 'a t -> key * 'a * 'a t
(** [extract_max m] returns [k, v, m'] where [k,v] is the pair with the
highest key in [m], and [m'] does not contain [k].
@raise Not_found if the map is empty *)
val choose : 'a t -> (key * 'a) option
val choose_exn : 'a t -> key * 'a
(** @raise Not_found if the tree is empty *)
val random_choose : Random.State.t -> 'a t -> key * 'a
(** Randomly choose a (key,value) pair within the tree, using weights
as probability weights
@raise Not_found if the tree is empty *)
val add_list : 'a t -> (key * 'a) list -> 'a t
val of_list : (key * 'a) list -> 'a t
val to_list : 'a t -> (key * 'a) list
val add_iter : 'a t -> (key * 'a) iter -> 'a t
val of_iter : (key * 'a) iter -> 'a t
val to_iter : 'a t -> (key * 'a) iter
val add_gen : 'a t -> (key * 'a) gen -> 'a t
val of_gen : (key * 'a) gen -> 'a t
val to_gen : 'a t -> (key * 'a) gen
val pp : ?pp_start:unit printer -> ?pp_stop:unit printer -> ?pp_arrow:unit printer ->
?pp_sep:unit printer -> key printer -> 'a printer -> 'a t printer
(**/**)
val node_ : key -> 'a -> 'a t -> 'a t -> 'a t
val balanced : _ t -> bool
(**/**)
end
module MakeFull(K : KEY) : S with type key = K.t = struct
type key = K.t
type weight = int
type +'a t =
| E
| N of key * 'a * 'a t * 'a t * weight
let empty = E
let is_empty = function
| E -> true
| N _ -> false
let rec get_exn k m = match m with
| E -> raise Not_found
| N (k', v, l, r, _) ->
match K.compare k k' with
| 0 -> v
| n when n<0 -> get_exn k l
| _ -> get_exn k r
let get k m =
try Some (get_exn k m)
with Not_found -> None
let mem k m =
try ignore (get_exn k m); true
with Not_found -> false
let singleton k v =
N (k, v, E, E, K.weight k)
let weight = function
| E -> 0
| N (_, _, _, _, w) -> w
(* balancing parameters.
We take the parameters from "Balancing weight-balanced trees", as they
are rational and efficient. *)
(* delta=5/2
delta × (weight l + 1) ≥ weight r + 1
*)
let is_balanced l r =
5 * (weight l + 1) >= 2 * (weight r + 1)
(* gamma = 3/2
weight l + 1 < gamma × (weight r + 1) *)
let is_single l r =
2 * (weight l + 1) < 3 * (weight r + 1)
(* debug function *)
let rec balanced = function
| E -> true
| N (_, _, l, r, _) ->
is_balanced l r &&
is_balanced r l &&
balanced l &&
balanced r
(* smart constructor *)
let mk_node_ k v l r =
N (k, v, l, r, weight l + weight r + K.weight k)
let single_l k1 v1 t1 t2 = match t2 with
| E -> assert false
| N (k2, v2, t2, t3, _) ->
mk_node_ k2 v2 (mk_node_ k1 v1 t1 t2) t3
let double_l k1 v1 t1 t2 = match t2 with
| N (k2, v2, N (k3, v3, t2, t3, _), t4, _) ->
mk_node_ k3 v3 (mk_node_ k1 v1 t1 t2) (mk_node_ k2 v2 t3 t4)
| _ -> assert false
let rotate_l k v l r = match r with
| E -> assert false
| N (_, _, rl, rr, _) ->
if is_single rl rr
then single_l k v l r
else double_l k v l r
(* balance towards left *)
let balance_l k v l r =
if is_balanced l r then mk_node_ k v l r
else rotate_l k v l r
let single_r k1 v1 t1 t2 = match t1 with
| E -> assert false
| N (k2, v2, t11, t12, _) ->
mk_node_ k2 v2 t11 (mk_node_ k1 v1 t12 t2)
let double_r k1 v1 t1 t2 = match t1 with
| N (k2, v2, t11, N (k3, v3, t121, t122, _), _) ->
mk_node_ k3 v3 (mk_node_ k2 v2 t11 t121) (mk_node_ k1 v1 t122 t2)
| _ -> assert false
let rotate_r k v l r = match l with
| E -> assert false
| N (_, _, ll, lr, _) ->
if is_single lr ll
then single_r k v l r
else double_r k v l r
(* balance toward right *)
let balance_r k v l r =
if is_balanced r l then mk_node_ k v l r
else rotate_r k v l r
let rec add k v m = match m with
| E -> singleton k v
| N (k', v', l, r, _) ->
match K.compare k k' with
| 0 -> mk_node_ k v l r
| n when n<0 -> balance_r k' v' (add k v l) r
| _ -> balance_l k' v' l (add k v r)
(*$Q
Q.(list (pair small_int bool)) (fun l -> \
let m = M.of_list l in \
M.balanced m)
Q.(list (pair small_int small_int)) (fun l -> \
let l = _list_uniq l in let m = M.of_list l in \
List.for_all (fun (k,v) -> M.get_exn k m = v) l)
Q.(list (pair small_int small_int)) (fun l -> \
let l = _list_uniq l in let m = M.of_list l in \
M.cardinal m = List.length l)
*)
(* extract min binding of the tree *)
let rec extract_min m = match m with
| E -> raise Not_found
| N (k, v, E, r, _) -> k, v, r
| N (k, v, l, r, _) ->
let k', v', l' = extract_min l in
k', v', balance_l k v l' r
(* extract max binding of the tree *)
let rec extract_max m = match m with
| E -> raise Not_found
| N (k, v, l, E, _) -> k, v, l
| N (k, v, l, r, _) ->
let k', v', r' = extract_max r in
k', v', balance_r k v l r'
let rec remove k m = match m with
| E -> E
| N (k', v', l, r, _) ->
match K.compare k k' with
| 0 ->
begin match l, r with
| E, E -> E
| E, o
| o, E -> o
| _, _ ->
if weight l > weight r
then
(* remove max element of [l] and put it at the root,
then rebalance towards the left if needed *)
let k', v', l' = extract_max l in
balance_l k' v' l' r
else
(* remove min element of [r] and rebalance *)
let k', v', r' = extract_min r in
balance_r k' v' l r'
end
| n when n<0 -> balance_l k' v' (remove k l) r
| _ -> balance_r k' v' l (remove k r)
(*$Q
Q.(list_of_size Gen.(0 -- 30) (pair small_int small_int)) (fun l -> \
let m = M.of_list l in \
List.for_all (fun (k,_) -> \
M.mem k m && (let m' = M.remove k m in not (M.mem k m'))) l)
Q.(list_of_size Gen.(0 -- 30) (pair small_int small_int)) (fun l -> \
let m = M.of_list l in \
List.for_all (fun (k,_) -> let m' = M.remove k m in M.balanced m') l)
*)
let update k f m =
let maybe_v = get k m in
match maybe_v, f maybe_v with
| None, None -> m
| Some _, None -> remove k m
| _, Some v -> add k v m
let rec nth_exn i m = match m with
| E -> raise Not_found
| N (k, v, l, r, w) ->
let c = i - weight l in
match c with
| 0 -> k, v
| n when n<0 -> nth_exn i l (* search left *)
| _ ->
(* means c< K.weight k *)
if i<w-weight r then k,v else nth_exn (i+weight r-w) r
let nth i m =
try Some (nth_exn i m)
with Not_found -> None
(*$T
let m = CCList.(0 -- 1000 |> map (fun i->i,i) |> M.of_list) in \
List.for_all (fun i -> M.nth_exn i m = (i,i)) CCList.(0--1000)
*)
let get_rank k m =
let rec aux i k m = match m with
| E -> if i=0 then `First else `After i
| N (k', _, l, r, _) ->
match K.compare k k' with
| 0 -> `At (i + weight l)
| n when n<0 -> aux i k l
| _ -> aux (1 + weight l + i) k r
in
aux 0 k m
(*$QR & ~count:1_000
Q.(list_of_size Gen.(0 -- 30) (pair small_int small_int)) (fun l ->
let l = CCList.sort_uniq ~cmp:(CCFun.compose_binop fst compare) l in
let m = M.of_list l in
List.for_all
(fun (k,v) -> match M.get_rank k m with
| `First | `After _ -> true
| `At n -> (k,v) = M.nth_exn n m)
l)
*)
let rec fold ~f ~x:acc m = match m with
| E -> acc
| N (k, v, l, r, _) ->
let acc = fold ~f ~x:acc l in
let acc = f acc k v in
fold ~f ~x:acc r
let rec mapi ~f = function
| E -> E
| N (k, v, l, r, w) ->
N (k, f k v, mapi ~f l, mapi ~f r, w)
let rec map ~f = function
| E -> E
| N (k, v, l, r, w) ->
N (k, f v, map ~f l, map ~f r, w)
let rec iter ~f m = match m with
| E -> ()
| N (k, v, l, r, _) ->
iter ~f l;
f k v;
iter ~f r
let choose_exn = function
| E -> raise Not_found
| N (k, v, _, _, _) -> k, v
let choose = function
| E -> None
| N (k, v, _, _, _) -> Some (k,v)
(* pick an index within [0.. weight m-1] and get the element with
this index *)
let random_choose st m =
let w = weight m in
if w=0 then raise Not_found;
nth_exn (Random.State.int st w) m
(* make a node (k,v,l,r) but balances on whichever side requires it *)
let node_shallow_ k v l r =
if is_balanced l r
then if is_balanced r l
then mk_node_ k v l r
else balance_r k v l r
else balance_l k v l r
(* assume keys of [l] are smaller than [k] and [k] smaller than keys of [r],
but do not assume anything about weights.
returns a tree with l, r, and (k,v) *)
let rec node_ k v l r = match l, r with
| E, E -> singleton k v
| E, o
| o, E -> add k v o
| N (kl, vl, ll, lr, _), N (kr, vr, rl, rr, _) ->
let left = is_balanced l r in
if left && is_balanced r l
then mk_node_ k v l r
else if not left
then node_shallow_ kr vr (node_ k v l rl) rr
else node_shallow_ kl vl ll (node_ k v lr r)
(* join two trees, assuming all keys of [l] are smaller than keys of [r] *)
let join_ l r = match l, r with
| E, E -> E
| E, o
| o, E -> o
| N _, N _ ->
if weight l <= weight r
then
let k, v, r' = extract_min r in
node_ k v l r'
else
let k, v, l' = extract_max l in
node_ k v l' r
(* if [o_v = Some v], behave like [mk_node k v l r]
else behave like [join_ l r] *)
let mk_node_or_join_ k o_v l r = match o_v with
| None -> join_ l r
| Some v -> node_ k v l r
let rec split k m = match m with
| E -> E, None, E
| N (k', v', l, r, _) ->
match K.compare k k' with
| 0 -> l, Some v', r
| n when n<0 ->
let ll, o, lr = split k l in
ll, o, node_ k' v' lr r
| _ ->
let rl, o, rr = split k r in
node_ k' v' l rl, o, rr
(*$QR & ~count:20
Q.(list_of_size Gen.(1 -- 100) (pair small_int small_int)) ( fun lst ->
let lst = _list_uniq lst in
let m = M.of_list lst in
List.for_all (fun (k,v) ->
let l, v', r = M.split k m in
v' = Some v
&& (M.to_iter l |> Iter.for_all (fun (k',_) -> k' < k))
&& (M.to_iter r |> Iter.for_all (fun (k',_) -> k' > k))
&& M.balanced m
&& M.cardinal l + M.cardinal r + 1 = List.length lst
) lst)
*)
let rec merge ~f a b = match a, b with
| E, E -> E
| E, N (k, v, l, r, _) ->
let v' = f k None (Some v) in
mk_node_or_join_ k v' (merge ~f E l) (merge ~f E r)
| N (k, v, l, r, _), E ->
let v' = f k (Some v) None in
mk_node_or_join_ k v' (merge ~f l E) (merge ~f r E)
| N (k1, v1, l1, r1, w1), N (k2, v2, l2, r2, w2) ->
if K.compare k1 k2 = 0
then (* easy case *)
mk_node_or_join_ k1 (f k1 (Some v1) (Some v2))
(merge ~f l1 l2) (merge ~f r1 r2)
else if w1 <= w2
then (* split left tree *)
let l1', v1', r1' = split k2 a in
mk_node_or_join_ k2 (f k2 v1' (Some v2))
(merge ~f l1' l2) (merge ~f r1' r2)
else (* split right tree *)
let l2', v2', r2' = split k1 b in
mk_node_or_join_ k1 (f k1 (Some v1) v2')
(merge ~f l1 l2') (merge ~f r1 r2')
(*$R
let m1 = M.of_list [1, 1; 2, 2; 4, 4] in
let m2 = M.of_list [1, 1; 3, 3; 4, 4; 7, 7] in
let m = M.merge ~f:(fun k -> CCOpt.map2 (+)) m1 m2 in
assert_bool "balanced" (M.balanced m);
assert_equal
~cmp:(CCList.equal (CCPair.equal CCInt.equal CCInt.equal))
~printer:CCFormat.(to_string (list (pair int int)))
[1, 2; 4, 8]
(M.to_list m |> List.sort Stdlib.compare)
*)
(*$QR
Q.(let p = list (pair small_int small_int) in pair p p) (fun (l1, l2) ->
let l1 = _list_uniq l1 and l2 = _list_uniq l2 in
let m1 = M.of_list l1 and m2 = M.of_list l2 in
let m = M.merge ~f:(fun _ v1 v2 -> match v1 with
| None -> v2 | Some _ as r -> r) m1 m2 in
List.for_all (fun (k,v) -> M.get_exn k m = v) l1 &&
List.for_all (fun (k,v) -> M.mem k m1 || M.get_exn k m = v) l2)
*)
let cardinal m = fold ~f:(fun acc _ _ -> acc+1) ~x:0 m
let add_list m l = List.fold_left (fun acc (k,v) -> add k v acc) m l
let of_list l = add_list empty l
let to_list m = fold ~f:(fun acc k v -> (k,v) :: acc) ~x:[] m
let add_iter m seq =
let m = ref m in
seq (fun (k,v) -> m := add k v !m);
!m
let of_iter s = add_iter empty s
let to_iter m yield = iter ~f:(fun k v -> yield (k,v)) m
let rec add_gen m g = match g() with
| None -> m
| Some (k,v) -> add_gen (add k v m) g
let of_gen g = add_gen empty g
let to_gen m =
let st = Stack.create () in
Stack.push m st;
let rec next() =
if Stack.is_empty st then None
else match Stack.pop st with
| E -> next ()
| N (k, v, l, r, _) ->
Stack.push r st;
Stack.push l st;
Some (k,v)
in next
let pp ?(pp_start=fun _ () -> ()) ?(pp_stop=fun _ () -> ())
?(pp_arrow=fun fmt () -> Format.fprintf fmt "@ -> ")
?(pp_sep=fun fmt () -> Format.fprintf fmt ",@ ")
pp_k pp_v fmt m =
pp_start fmt ();
let first = ref true in
iter m
~f:(fun k v ->
if !first then first := false else pp_sep fmt ();
pp_k fmt k;
pp_arrow fmt ();
pp_v fmt v;
Format.pp_print_cut fmt ()
);
pp_stop fmt ();
end
module Make(X : ORD) = MakeFull(struct
include X
let weight _ = 1
end)