ocaml-containers/src/core/CCHeap.ml
2024-05-13 20:57:53 -04:00

395 lines
9.4 KiB
OCaml

(* This file is free software, part of containers. See file "license" for more details. *)
(** {1 Leftist Heaps} *)
type 'a iter = ('a -> unit) -> unit
type 'a gen = unit -> 'a option
type 'a printer = Format.formatter -> 'a -> unit
type 'a ktree = unit -> [ `Nil | `Node of 'a * 'a ktree list ]
module type PARTIAL_ORD = sig
type t
val leq : t -> t -> bool
(** [leq x y] shall return [true] iff [x] is lower or equal to [y]. *)
end
module type TOTAL_ORD = sig
type t
val compare : t -> t -> int
(** [compare a b] shall return
a negative value if [a] is smaller than [b],
[0] if [a] and [b] are equal or
a positive value if [a] is greater than [b] *)
end
module type S = sig
type elt
type t
val empty : t
(** Empty heap. *)
val is_empty : t -> bool
(** Is the heap empty? *)
exception Empty
val merge : t -> t -> t
(** Merge two heaps. *)
val insert : elt -> t -> t
(** Insert a value in the heap. *)
val add : t -> elt -> t
(** Synonym to {!insert}. *)
val filter : (elt -> bool) -> t -> t
(** Filter values, only retaining the ones that satisfy the predicate.
Linear time at least. *)
val find_min : t -> elt option
(** Find minimal element. *)
val find_min_exn : t -> elt
(** Like {!find_min} but can fail.
@raise Empty if the heap is empty. *)
val take : t -> (t * elt) option
(** Extract and return the minimum element, and the new heap (without
this element), or [None] if the heap is empty. *)
val take_exn : t -> t * elt
(** Like {!take}, but can fail.
@raise Empty if the heap is empty. *)
val delete_one : (elt -> elt -> bool) -> elt -> t -> t
(** Delete one occurrence of a value if it exist in the heap.
[delete_one eq x h], use [eq] to find one [x] in [h] and delete it.
If [h] do not contain [x] then it return [h].
@since 2.0 *)
val delete_all : (elt -> elt -> bool) -> elt -> t -> t
(** Delete all occurrences of a value in the heap.
[delete_all eq x h], use [eq] to find all [x] in [h] and delete them.
If [h] do not contain [x] then it return [h].
The difference with {!filter} is that [delete_all] stops as soon as
it enters a subtree whose root is bigger than the element.
@since 2.0 *)
val iter : (elt -> unit) -> t -> unit
(** Iterate on elements. *)
val fold : ('a -> elt -> 'a) -> 'a -> t -> 'a
(** Fold on all values. *)
val size : t -> int
(** Number of elements (linear complexity). *)
(** {2 Conversions} *)
val to_list : t -> elt list
(** Return the elements of the heap, in no particular order. *)
val to_list_sorted : t -> elt list
(** Return the elements in increasing order.
@since 1.1 *)
val add_list : t -> elt list -> t
(** Add the elements of the list to the heap. An element occurring several
times will be added that many times to the heap.
@since 0.16 *)
val of_list : elt list -> t
(** [of_list l] is [add_list empty l]. Complexity: [O(n log n)]. *)
val add_iter : t -> elt iter -> t
(** Like {!add_list}.
@since 2.8 *)
val add_seq : t -> elt Seq.t -> t
(** Like {!add_list}.
@since 2.8 *)
val of_iter : elt iter -> t
(** Build a heap from a given [iter]. Complexity: [O(n log n)].
@since 2.8 *)
val of_seq : elt Seq.t -> t
(** Build a heap from a given [Seq.t]. Complexity: [O(n log n)].
@since 2.8 *)
val to_iter : t -> elt iter
(** Return a [iter] of the elements of the heap.
@since 2.8 *)
val to_seq : t -> elt Seq.t
(** Return a [Seq.t] of the elements of the heap.
@since 2.8 *)
val to_iter_sorted : t -> elt iter
(** Iterate on the elements, in increasing order.
@since 2.8 *)
val to_seq_sorted : t -> elt Seq.t
(** Iterate on the elements, in increasing order.
@since 2.8 *)
val add_gen : t -> elt gen -> t
(** @since 0.16 *)
val of_gen : elt gen -> t
(** Build a heap from a given [gen]. Complexity: [O(n log n)]. *)
val to_gen : t -> elt gen
(** Return a [gen] of the elements of the heap. *)
val to_tree : t -> elt ktree
(** Return a [ktree] of the elements of the heap. *)
val to_string : ?sep:string -> (elt -> string) -> t -> string
(** Print the heap in a string
@since 2.7 *)
val pp :
?pp_start:unit printer ->
?pp_stop:unit printer ->
?pp_sep:unit printer ->
elt printer ->
t printer
(** Printer.
Renamed from {!print} since 2.0
@since 0.16 *)
end
module Make (E : PARTIAL_ORD) : S with type elt = E.t = struct
type elt = E.t
type t =
| E
| N of int * elt * t * t
let empty = E
let is_empty = function
| E -> true
| N _ -> false
exception Empty
(* Rank of the tree *)
let _rank = function
| E -> 0
| N (r, _, _, _) -> r
(* Make a balanced node labelled with [x], and subtrees [a] and [b].
We ensure that the right child's rank is ≤ to the rank of the
left child (leftist property). The rank of the resulting node
is the length of the rightmost path. *)
let _make_node x a b =
if _rank a >= _rank b then
N (_rank b + 1, x, a, b)
else
N (_rank a + 1, x, b, a)
let rec merge t1 t2 =
match t1, t2 with
| t, E -> t
| E, t -> t
| N (_, x, a1, b1), N (_, y, a2, b2) ->
if E.leq x y then
_make_node x a1 (merge b1 t2)
else
_make_node y a2 (merge t1 b2)
let insert x h = merge (N (1, x, E, E)) h
let add h x = insert x h
let rec filter p h =
match h with
| E -> E
| N (_, x, l, r) when p x -> _make_node x (filter p l) (filter p r)
| N (_, _, l, r) -> merge (filter p l) (filter p r)
let find_min_exn = function
| E -> raise Empty
| N (_, x, _, _) -> x
let find_min = function
| E -> None
| N (_, x, _, _) -> Some x
let take = function
| E -> None
| N (_, x, l, r) -> Some (merge l r, x)
let take_exn = function
| E -> raise Empty
| N (_, x, l, r) -> merge l r, x
let delete_one eq x h =
let rec aux = function
| E -> false, E
| N (_, y, l, r) as h ->
if eq x y then
true, merge l r
else if E.leq y x then (
let found_left, l1 = aux l in
let found, r1 =
if found_left then
true, r
else
aux r
in
if found then
true, _make_node y l1 r1
else
false, h
) else
false, h
in
snd (aux h)
let rec delete_all eq x = function
| E -> E
| N (_, y, l, r) as h ->
if eq x y then
merge (delete_all eq x l) (delete_all eq x r)
else if E.leq y x then
_make_node y (delete_all eq x l) (delete_all eq x r)
else
h
let rec iter f h =
match h with
| E -> ()
| N (_, x, l, r) ->
f x;
iter f l;
iter f r
let rec fold f acc h =
match h with
| E -> acc
| N (_, x, a, b) ->
let acc = f acc x in
let acc = fold f acc a in
fold f acc b
let rec size = function
| E -> 0
| N (_, _, l, r) -> 1 + size l + size r
(** {2 Conversions} *)
let to_list h =
let rec aux acc h =
match h with
| E -> acc
| N (_, x, l, r) -> x :: aux (aux acc l) r
in
aux [] h
let to_list_sorted heap =
let rec recurse acc h =
match take h with
| None -> List.rev acc
| Some (h', x) -> recurse (x :: acc) h'
in
recurse [] heap
let add_list h l = List.fold_left add h l
let of_list l = add_list empty l
let add_iter h i =
let h = ref h in
i (fun x -> h := insert x !h);
!h
let add_seq h seq =
let h = ref h in
Seq.iter (fun x -> h := insert x !h) seq;
!h
let of_iter i = add_iter empty i
let of_seq seq = add_seq empty seq
let to_iter h k = iter k h
let to_seq h =
(* use an explicit stack [st] *)
let rec aux st () =
match st with
| [] -> Seq.Nil
| E :: st' -> aux st' ()
| N (_, x, l, r) :: st' -> Seq.Cons (x, aux (l :: r :: st'))
in
aux [ h ]
let to_iter_sorted heap =
let rec recurse h k =
match take h with
| None -> ()
| Some (h', x) ->
k x;
recurse h' k
in
fun k -> recurse heap k
let rec to_seq_sorted h () =
match take h with
| None -> Seq.Nil
| Some (h', x) -> Seq.Cons (x, to_seq_sorted h')
let rec add_gen h g =
match g () with
| None -> h
| Some x -> add_gen (add h x) g
let of_gen g = add_gen empty g
let to_gen h =
let stack = Stack.create () in
Stack.push h stack;
let rec next () =
if Stack.is_empty stack then
None
else (
match Stack.pop stack with
| E -> next ()
| N (_, x, a, b) ->
Stack.push a stack;
Stack.push b stack;
Some x
)
in
next
let rec to_tree h () =
match h with
| E -> `Nil
| N (_, x, l, r) -> `Node (x, [ to_tree l; to_tree r ])
let to_string ?(sep = ",") elt_to_string h =
to_list_sorted h |> List.map elt_to_string |> String.concat sep
let pp ?(pp_start = fun _ () -> ()) ?(pp_stop = fun _ () -> ())
?(pp_sep = fun out () -> Format.fprintf out ",") pp_elt out h =
let first = ref true in
pp_start out ();
iter
(fun x ->
if !first then
first := false
else
pp_sep out ();
pp_elt out x)
h;
pp_stop out ()
end
module Make_from_compare (E : TOTAL_ORD) = Make (struct
type t = E.t
let leq a b = E.compare a b <= 0
end)