mirror of
https://github.com/c-cube/ocaml-containers.git
synced 2025-12-06 03:05:28 -05:00
395 lines
9.4 KiB
OCaml
395 lines
9.4 KiB
OCaml
(* This file is free software, part of containers. See file "license" for more details. *)
|
|
|
|
(** {1 Leftist Heaps} *)
|
|
|
|
type 'a iter = ('a -> unit) -> unit
|
|
type 'a gen = unit -> 'a option
|
|
type 'a printer = Format.formatter -> 'a -> unit
|
|
type 'a ktree = unit -> [ `Nil | `Node of 'a * 'a ktree list ]
|
|
|
|
module type PARTIAL_ORD = sig
|
|
type t
|
|
|
|
val leq : t -> t -> bool
|
|
(** [leq x y] shall return [true] iff [x] is lower or equal to [y]. *)
|
|
end
|
|
|
|
module type TOTAL_ORD = sig
|
|
type t
|
|
|
|
val compare : t -> t -> int
|
|
(** [compare a b] shall return
|
|
a negative value if [a] is smaller than [b],
|
|
[0] if [a] and [b] are equal or
|
|
a positive value if [a] is greater than [b] *)
|
|
end
|
|
|
|
module type S = sig
|
|
type elt
|
|
type t
|
|
|
|
val empty : t
|
|
(** Empty heap. *)
|
|
|
|
val is_empty : t -> bool
|
|
(** Is the heap empty? *)
|
|
|
|
exception Empty
|
|
|
|
val merge : t -> t -> t
|
|
(** Merge two heaps. *)
|
|
|
|
val insert : elt -> t -> t
|
|
(** Insert a value in the heap. *)
|
|
|
|
val add : t -> elt -> t
|
|
(** Synonym to {!insert}. *)
|
|
|
|
val filter : (elt -> bool) -> t -> t
|
|
(** Filter values, only retaining the ones that satisfy the predicate.
|
|
Linear time at least. *)
|
|
|
|
val find_min : t -> elt option
|
|
(** Find minimal element. *)
|
|
|
|
val find_min_exn : t -> elt
|
|
(** Like {!find_min} but can fail.
|
|
@raise Empty if the heap is empty. *)
|
|
|
|
val take : t -> (t * elt) option
|
|
(** Extract and return the minimum element, and the new heap (without
|
|
this element), or [None] if the heap is empty. *)
|
|
|
|
val take_exn : t -> t * elt
|
|
(** Like {!take}, but can fail.
|
|
@raise Empty if the heap is empty. *)
|
|
|
|
val delete_one : (elt -> elt -> bool) -> elt -> t -> t
|
|
(** Delete one occurrence of a value if it exist in the heap.
|
|
[delete_one eq x h], use [eq] to find one [x] in [h] and delete it.
|
|
If [h] do not contain [x] then it return [h].
|
|
@since 2.0 *)
|
|
|
|
val delete_all : (elt -> elt -> bool) -> elt -> t -> t
|
|
(** Delete all occurrences of a value in the heap.
|
|
[delete_all eq x h], use [eq] to find all [x] in [h] and delete them.
|
|
If [h] do not contain [x] then it return [h].
|
|
The difference with {!filter} is that [delete_all] stops as soon as
|
|
it enters a subtree whose root is bigger than the element.
|
|
@since 2.0 *)
|
|
|
|
val iter : (elt -> unit) -> t -> unit
|
|
(** Iterate on elements. *)
|
|
|
|
val fold : ('a -> elt -> 'a) -> 'a -> t -> 'a
|
|
(** Fold on all values. *)
|
|
|
|
val size : t -> int
|
|
(** Number of elements (linear complexity). *)
|
|
|
|
(** {2 Conversions} *)
|
|
|
|
val to_list : t -> elt list
|
|
(** Return the elements of the heap, in no particular order. *)
|
|
|
|
val to_list_sorted : t -> elt list
|
|
(** Return the elements in increasing order.
|
|
@since 1.1 *)
|
|
|
|
val add_list : t -> elt list -> t
|
|
(** Add the elements of the list to the heap. An element occurring several
|
|
times will be added that many times to the heap.
|
|
@since 0.16 *)
|
|
|
|
val of_list : elt list -> t
|
|
(** [of_list l] is [add_list empty l]. Complexity: [O(n log n)]. *)
|
|
|
|
val add_iter : t -> elt iter -> t
|
|
(** Like {!add_list}.
|
|
@since 2.8 *)
|
|
|
|
val add_seq : t -> elt Seq.t -> t
|
|
(** Like {!add_list}.
|
|
@since 2.8 *)
|
|
|
|
val of_iter : elt iter -> t
|
|
(** Build a heap from a given [iter]. Complexity: [O(n log n)].
|
|
@since 2.8 *)
|
|
|
|
val of_seq : elt Seq.t -> t
|
|
(** Build a heap from a given [Seq.t]. Complexity: [O(n log n)].
|
|
@since 2.8 *)
|
|
|
|
val to_iter : t -> elt iter
|
|
(** Return a [iter] of the elements of the heap.
|
|
@since 2.8 *)
|
|
|
|
val to_seq : t -> elt Seq.t
|
|
(** Return a [Seq.t] of the elements of the heap.
|
|
@since 2.8 *)
|
|
|
|
val to_iter_sorted : t -> elt iter
|
|
(** Iterate on the elements, in increasing order.
|
|
@since 2.8 *)
|
|
|
|
val to_seq_sorted : t -> elt Seq.t
|
|
(** Iterate on the elements, in increasing order.
|
|
@since 2.8 *)
|
|
|
|
val add_gen : t -> elt gen -> t
|
|
(** @since 0.16 *)
|
|
|
|
val of_gen : elt gen -> t
|
|
(** Build a heap from a given [gen]. Complexity: [O(n log n)]. *)
|
|
|
|
val to_gen : t -> elt gen
|
|
(** Return a [gen] of the elements of the heap. *)
|
|
|
|
val to_tree : t -> elt ktree
|
|
(** Return a [ktree] of the elements of the heap. *)
|
|
|
|
val to_string : ?sep:string -> (elt -> string) -> t -> string
|
|
(** Print the heap in a string
|
|
@since 2.7 *)
|
|
|
|
val pp :
|
|
?pp_start:unit printer ->
|
|
?pp_stop:unit printer ->
|
|
?pp_sep:unit printer ->
|
|
elt printer ->
|
|
t printer
|
|
(** Printer.
|
|
Renamed from {!print} since 2.0
|
|
@since 0.16 *)
|
|
end
|
|
|
|
module Make (E : PARTIAL_ORD) : S with type elt = E.t = struct
|
|
type elt = E.t
|
|
|
|
type t =
|
|
| E
|
|
| N of int * elt * t * t
|
|
|
|
let empty = E
|
|
|
|
let is_empty = function
|
|
| E -> true
|
|
| N _ -> false
|
|
|
|
exception Empty
|
|
|
|
(* Rank of the tree *)
|
|
let _rank = function
|
|
| E -> 0
|
|
| N (r, _, _, _) -> r
|
|
|
|
(* Make a balanced node labelled with [x], and subtrees [a] and [b].
|
|
We ensure that the right child's rank is ≤ to the rank of the
|
|
left child (leftist property). The rank of the resulting node
|
|
is the length of the rightmost path. *)
|
|
let _make_node x a b =
|
|
if _rank a >= _rank b then
|
|
N (_rank b + 1, x, a, b)
|
|
else
|
|
N (_rank a + 1, x, b, a)
|
|
|
|
let rec merge t1 t2 =
|
|
match t1, t2 with
|
|
| t, E -> t
|
|
| E, t -> t
|
|
| N (_, x, a1, b1), N (_, y, a2, b2) ->
|
|
if E.leq x y then
|
|
_make_node x a1 (merge b1 t2)
|
|
else
|
|
_make_node y a2 (merge t1 b2)
|
|
|
|
let insert x h = merge (N (1, x, E, E)) h
|
|
let add h x = insert x h
|
|
|
|
let rec filter p h =
|
|
match h with
|
|
| E -> E
|
|
| N (_, x, l, r) when p x -> _make_node x (filter p l) (filter p r)
|
|
| N (_, _, l, r) -> merge (filter p l) (filter p r)
|
|
|
|
let find_min_exn = function
|
|
| E -> raise Empty
|
|
| N (_, x, _, _) -> x
|
|
|
|
let find_min = function
|
|
| E -> None
|
|
| N (_, x, _, _) -> Some x
|
|
|
|
let take = function
|
|
| E -> None
|
|
| N (_, x, l, r) -> Some (merge l r, x)
|
|
|
|
let take_exn = function
|
|
| E -> raise Empty
|
|
| N (_, x, l, r) -> merge l r, x
|
|
|
|
let delete_one eq x h =
|
|
let rec aux = function
|
|
| E -> false, E
|
|
| N (_, y, l, r) as h ->
|
|
if eq x y then
|
|
true, merge l r
|
|
else if E.leq y x then (
|
|
let found_left, l1 = aux l in
|
|
let found, r1 =
|
|
if found_left then
|
|
true, r
|
|
else
|
|
aux r
|
|
in
|
|
if found then
|
|
true, _make_node y l1 r1
|
|
else
|
|
false, h
|
|
) else
|
|
false, h
|
|
in
|
|
snd (aux h)
|
|
|
|
let rec delete_all eq x = function
|
|
| E -> E
|
|
| N (_, y, l, r) as h ->
|
|
if eq x y then
|
|
merge (delete_all eq x l) (delete_all eq x r)
|
|
else if E.leq y x then
|
|
_make_node y (delete_all eq x l) (delete_all eq x r)
|
|
else
|
|
h
|
|
|
|
let rec iter f h =
|
|
match h with
|
|
| E -> ()
|
|
| N (_, x, l, r) ->
|
|
f x;
|
|
iter f l;
|
|
iter f r
|
|
|
|
let rec fold f acc h =
|
|
match h with
|
|
| E -> acc
|
|
| N (_, x, a, b) ->
|
|
let acc = f acc x in
|
|
let acc = fold f acc a in
|
|
fold f acc b
|
|
|
|
let rec size = function
|
|
| E -> 0
|
|
| N (_, _, l, r) -> 1 + size l + size r
|
|
|
|
(** {2 Conversions} *)
|
|
|
|
let to_list h =
|
|
let rec aux acc h =
|
|
match h with
|
|
| E -> acc
|
|
| N (_, x, l, r) -> x :: aux (aux acc l) r
|
|
in
|
|
aux [] h
|
|
|
|
let to_list_sorted heap =
|
|
let rec recurse acc h =
|
|
match take h with
|
|
| None -> List.rev acc
|
|
| Some (h', x) -> recurse (x :: acc) h'
|
|
in
|
|
recurse [] heap
|
|
|
|
let add_list h l = List.fold_left add h l
|
|
let of_list l = add_list empty l
|
|
|
|
let add_iter h i =
|
|
let h = ref h in
|
|
i (fun x -> h := insert x !h);
|
|
!h
|
|
|
|
let add_seq h seq =
|
|
let h = ref h in
|
|
Seq.iter (fun x -> h := insert x !h) seq;
|
|
!h
|
|
|
|
let of_iter i = add_iter empty i
|
|
let of_seq seq = add_seq empty seq
|
|
let to_iter h k = iter k h
|
|
|
|
let to_seq h =
|
|
(* use an explicit stack [st] *)
|
|
let rec aux st () =
|
|
match st with
|
|
| [] -> Seq.Nil
|
|
| E :: st' -> aux st' ()
|
|
| N (_, x, l, r) :: st' -> Seq.Cons (x, aux (l :: r :: st'))
|
|
in
|
|
aux [ h ]
|
|
|
|
let to_iter_sorted heap =
|
|
let rec recurse h k =
|
|
match take h with
|
|
| None -> ()
|
|
| Some (h', x) ->
|
|
k x;
|
|
recurse h' k
|
|
in
|
|
fun k -> recurse heap k
|
|
|
|
let rec to_seq_sorted h () =
|
|
match take h with
|
|
| None -> Seq.Nil
|
|
| Some (h', x) -> Seq.Cons (x, to_seq_sorted h')
|
|
|
|
let rec add_gen h g =
|
|
match g () with
|
|
| None -> h
|
|
| Some x -> add_gen (add h x) g
|
|
|
|
let of_gen g = add_gen empty g
|
|
|
|
let to_gen h =
|
|
let stack = Stack.create () in
|
|
Stack.push h stack;
|
|
let rec next () =
|
|
if Stack.is_empty stack then
|
|
None
|
|
else (
|
|
match Stack.pop stack with
|
|
| E -> next ()
|
|
| N (_, x, a, b) ->
|
|
Stack.push a stack;
|
|
Stack.push b stack;
|
|
Some x
|
|
)
|
|
in
|
|
next
|
|
|
|
let rec to_tree h () =
|
|
match h with
|
|
| E -> `Nil
|
|
| N (_, x, l, r) -> `Node (x, [ to_tree l; to_tree r ])
|
|
|
|
let to_string ?(sep = ",") elt_to_string h =
|
|
to_list_sorted h |> List.map elt_to_string |> String.concat sep
|
|
|
|
let pp ?(pp_start = fun _ () -> ()) ?(pp_stop = fun _ () -> ())
|
|
?(pp_sep = fun out () -> Format.fprintf out ",") pp_elt out h =
|
|
let first = ref true in
|
|
pp_start out ();
|
|
iter
|
|
(fun x ->
|
|
if !first then
|
|
first := false
|
|
else
|
|
pp_sep out ();
|
|
pp_elt out x)
|
|
h;
|
|
pp_stop out ()
|
|
end
|
|
|
|
module Make_from_compare (E : TOTAL_ORD) = Make (struct
|
|
type t = E.t
|
|
|
|
let leq a b = E.compare a b <= 0
|
|
end)
|