mirror of
https://github.com/c-cube/ocaml-containers.git
synced 2026-01-21 08:46:41 -05:00
528 lines
12 KiB
OCaml
528 lines
12 KiB
OCaml
(* This file is free software, part of containers. See file "license" for more details. *)
|
|
|
|
(** {1 Random-Access Lists} *)
|
|
|
|
(** A complete binary tree *)
|
|
type +'a tree =
|
|
| Leaf of 'a
|
|
| Node of 'a * 'a tree * 'a tree
|
|
|
|
and +'a t =
|
|
| Nil
|
|
| Cons of int * 'a tree * 'a t (** Functional array of complete trees *)
|
|
|
|
(** {2 Functions on trees} *)
|
|
|
|
(** {2 Functions on lists of trees} *)
|
|
|
|
let empty = Nil
|
|
let return x = Cons (1, Leaf x, Nil)
|
|
|
|
let is_empty = function
|
|
| Nil -> true
|
|
| Cons _ -> false
|
|
|
|
let rec get_exn l i =
|
|
match l with
|
|
| Nil -> invalid_arg "RAL.get"
|
|
| Cons (size, t, _) when i < size -> tree_lookup_ size t i
|
|
| Cons (size, _, l') -> get_exn l' (i - size)
|
|
|
|
and tree_lookup_ size t i =
|
|
match t, i with
|
|
| Leaf x, 0 -> x
|
|
| Leaf _, _ -> invalid_arg "RAL.get"
|
|
| Node (x, _, _), 0 -> x
|
|
| Node (_, t1, t2), _ ->
|
|
let size' = size / 2 in
|
|
if i <= size' then
|
|
tree_lookup_ size' t1 (i - 1)
|
|
else
|
|
tree_lookup_ size' t2 (i - 1 - size')
|
|
|
|
let get l i = try Some (get_exn l i) with Invalid_argument _ -> None
|
|
|
|
let rec set l i v =
|
|
match l with
|
|
| Nil -> invalid_arg "RAL.set"
|
|
| Cons (size, t, l') when i < size -> Cons (size, tree_update_ size t i v, l')
|
|
| Cons (size, t, l') -> Cons (size, t, set l' (i - size) v)
|
|
|
|
and tree_update_ size t i v =
|
|
match t, i with
|
|
| Leaf _, 0 -> Leaf v
|
|
| Leaf _, _ -> invalid_arg "RAL.set"
|
|
| Node (_, t1, t2), 0 -> Node (v, t1, t2)
|
|
| Node (x, t1, t2), _ ->
|
|
let size' = size / 2 in
|
|
if i <= size' then
|
|
Node (x, tree_update_ size' t1 (i - 1) v, t2)
|
|
else
|
|
Node (x, t1, tree_update_ size' t2 (i - 1 - size') v)
|
|
|
|
let cons x l =
|
|
match l with
|
|
| Cons (size1, t1, Cons (size2, t2, l')) when size1 = size2 ->
|
|
Cons (1 + size1 + size2, Node (x, t1, t2), l')
|
|
| _ -> Cons (1, Leaf x, l)
|
|
|
|
let cons' l x = cons x l
|
|
|
|
let hd l =
|
|
match l with
|
|
| Nil -> invalid_arg "RAL.hd"
|
|
| Cons (_, Leaf x, _) -> x
|
|
| Cons (_, Node (x, _, _), _) -> x
|
|
|
|
let tl l =
|
|
match l with
|
|
| Nil -> invalid_arg "RAL.tl"
|
|
| Cons (_, Leaf _, l') -> l'
|
|
| Cons (size, Node (_, t1, t2), l') ->
|
|
let size' = size / 2 in
|
|
Cons (size', t1, Cons (size', t2, l'))
|
|
|
|
let front l =
|
|
match l with
|
|
| Nil -> None
|
|
| Cons (_, Leaf x, tl) -> Some (x, tl)
|
|
| Cons (size, Node (x, t1, t2), l') ->
|
|
let size' = size / 2 in
|
|
Some (x, Cons (size', t1, Cons (size', t2, l')))
|
|
|
|
let front_exn l =
|
|
match l with
|
|
| Nil -> invalid_arg "RAL.front_exn"
|
|
| Cons (_, Leaf x, tl) -> x, tl
|
|
| Cons (size, Node (x, t1, t2), l') ->
|
|
let size' = size / 2 in
|
|
x, Cons (size', t1, Cons (size', t2, l'))
|
|
|
|
let rec _remove prefix l i =
|
|
let x, l' = front_exn l in
|
|
if i = 0 then
|
|
List.fold_left (fun l x -> cons x l) l' prefix
|
|
else
|
|
_remove (x :: prefix) l' (i - 1)
|
|
|
|
let remove l i = _remove [] l i
|
|
|
|
let rec _get_and_remove_exn prefix l i =
|
|
let x, l' = front_exn l in
|
|
if i = 0 then
|
|
x, List.fold_left (fun l x -> cons x l) l' prefix
|
|
else
|
|
_get_and_remove_exn (x :: prefix) l' (i - 1)
|
|
|
|
let get_and_remove_exn l i = _get_and_remove_exn [] l i
|
|
|
|
let rec _map_tree f t =
|
|
match t with
|
|
| Leaf x -> Leaf (f x)
|
|
| Node (x, l, r) -> Node (f x, _map_tree f l, _map_tree f r)
|
|
|
|
let rec map ~f l =
|
|
match l with
|
|
| Nil -> Nil
|
|
| Cons (i, t, tl) -> Cons (i, _map_tree f t, map ~f tl)
|
|
|
|
let mapi ~f l =
|
|
let rec aux f i l =
|
|
match l with
|
|
| Nil -> Nil
|
|
| Cons (size, t, tl) -> Cons (size, aux_t f ~size i t, aux f (i + size) tl)
|
|
and aux_t f ~size i t =
|
|
match t with
|
|
| Leaf x -> Leaf (f i x)
|
|
| Node (x, l, r) ->
|
|
let x = f i x in
|
|
let l = aux_t f ~size:(size / 2) (i + 1) l in
|
|
Node (x, l, aux_t f ~size:(size / 2) (i + 1 + (size / 2)) r)
|
|
in
|
|
aux f 0 l
|
|
|
|
let rec length l =
|
|
match l with
|
|
| Nil -> 0
|
|
| Cons (size, _, l') -> size + length l'
|
|
|
|
let rec iter ~f l =
|
|
match l with
|
|
| Nil -> ()
|
|
| Cons (_, Leaf x, l') ->
|
|
f x;
|
|
iter ~f l'
|
|
| Cons (_, t, l') ->
|
|
iter_tree t f;
|
|
iter ~f l'
|
|
|
|
and iter_tree t f =
|
|
match t with
|
|
| Leaf x -> f x
|
|
| Node (x, t1, t2) ->
|
|
f x;
|
|
iter_tree t1 f;
|
|
iter_tree t2 f
|
|
|
|
let iteri ~f l =
|
|
let rec aux f i l =
|
|
match l with
|
|
| Nil -> ()
|
|
| Cons (size, t, l') ->
|
|
aux_t ~size f i t;
|
|
aux f (i + size) l'
|
|
and aux_t f ~size i t =
|
|
match t with
|
|
| Leaf x -> f i x
|
|
| Node (x, l, r) ->
|
|
f i x;
|
|
let size' = size / 2 in
|
|
aux_t ~size:size' f (i + 1) l;
|
|
aux_t ~size:size' f (i + 1 + size') r
|
|
in
|
|
aux f 0 l
|
|
|
|
let rec fold ~f ~x:acc l =
|
|
match l with
|
|
| Nil -> acc
|
|
| Cons (_, Leaf x, l') -> fold ~f ~x:(f acc x) l'
|
|
| Cons (_, t, l') ->
|
|
let acc' = fold_tree t acc f in
|
|
fold ~f ~x:acc' l'
|
|
|
|
and fold_tree t acc f =
|
|
match t with
|
|
| Leaf x -> f acc x
|
|
| Node (x, t1, t2) ->
|
|
let acc = f acc x in
|
|
let acc = fold_tree t1 acc f in
|
|
fold_tree t2 acc f
|
|
|
|
let rec fold_rev ~f ~x:acc l =
|
|
match l with
|
|
| Nil -> acc
|
|
| Cons (_, Leaf x, l') -> f (fold_rev ~f ~x:acc l') x
|
|
| Cons (_, t, l') ->
|
|
let acc = fold_rev ~f ~x:acc l' in
|
|
fold_tree_rev t acc f
|
|
|
|
and fold_tree_rev t acc f =
|
|
match t with
|
|
| Leaf x -> f acc x
|
|
| Node (x, t1, t2) ->
|
|
let acc = fold_tree_rev t2 acc f in
|
|
let acc = fold_tree_rev t1 acc f in
|
|
f acc x
|
|
|
|
let rev_map ~f l = fold ~f:(fun acc x -> cons (f x) acc) ~x:empty l
|
|
let rev l = fold ~f:cons' ~x:empty l
|
|
let append l1 l2 = fold_rev ~f:(fun l2 x -> cons x l2) ~x:l2 l1
|
|
let append_tree_ t l = fold_tree_rev t l cons'
|
|
|
|
let filter ~f l =
|
|
fold_rev
|
|
~f:(fun acc x ->
|
|
if f x then
|
|
cons x acc
|
|
else
|
|
acc)
|
|
~x:empty l
|
|
|
|
let filter_map ~f l =
|
|
fold_rev ~x:empty l ~f:(fun acc x ->
|
|
match f x with
|
|
| None -> acc
|
|
| Some y -> cons y acc)
|
|
|
|
let flat_map f l =
|
|
fold_rev ~x:empty l ~f:(fun acc x ->
|
|
let l = f x in
|
|
append l acc)
|
|
|
|
let flatten l = fold_rev ~f:(fun acc l -> append l acc) ~x:empty l
|
|
|
|
let app funs l =
|
|
fold_rev ~x:empty funs ~f:(fun acc f ->
|
|
fold_rev ~x:acc l ~f:(fun acc x -> cons (f x) acc))
|
|
|
|
type 'a stack =
|
|
| St_nil
|
|
| St_list of 'a t * 'a stack
|
|
| St_tree of 'a tree * 'a stack
|
|
|
|
let rec stack_to_list = function
|
|
| St_nil -> Nil
|
|
| St_list (l, st') -> append l (stack_to_list st')
|
|
| St_tree (t, st') -> append_tree_ t (stack_to_list st')
|
|
|
|
let rec take n l =
|
|
match l with
|
|
| Nil -> Nil
|
|
| Cons (size, t, tl) ->
|
|
if size <= n then
|
|
append_tree_ t (take (n - size) tl)
|
|
else
|
|
take_tree_ ~size n t
|
|
|
|
and take_tree_ ~size n t =
|
|
match t with
|
|
| _ when n = 0 -> Nil
|
|
| Leaf x -> cons x Nil
|
|
| Node (x, l, r) ->
|
|
let size' = size / 2 in
|
|
if size' <= n - 1 then
|
|
cons x (append_tree_ l (take_tree_ ~size:size' (n - size' - 1) r))
|
|
else
|
|
cons x (take_tree_ ~size:size' (n - 1) l)
|
|
|
|
let take_while ~f l =
|
|
(* st: stack of subtrees *)
|
|
let rec aux p st =
|
|
match st with
|
|
| St_nil -> Nil
|
|
| St_list (Nil, st') -> aux p st'
|
|
| St_list (Cons (_, t, tl), st') -> aux p (St_tree (t, St_list (tl, st')))
|
|
| St_tree (Leaf x, st') ->
|
|
if p x then
|
|
cons x (aux p st')
|
|
else
|
|
Nil
|
|
| St_tree (Node (x, l, r), st') ->
|
|
if p x then
|
|
cons x (aux p (St_tree (l, St_tree (r, st'))))
|
|
else
|
|
Nil
|
|
in
|
|
aux f (St_list (l, St_nil))
|
|
|
|
(* drop [n < size] elements from [t] *)
|
|
let rec drop_tree_ ~size n t tail =
|
|
match t with
|
|
| _ when n = 0 -> tail
|
|
| Leaf _ ->
|
|
assert (n = 1);
|
|
tail
|
|
| Node (_, left, right) ->
|
|
if n = 1 then
|
|
append_tree_ left (append_tree_ right tail)
|
|
else (
|
|
assert (size mod 2 = 1);
|
|
let size_sub = size / 2 in
|
|
(* size of subtrees *)
|
|
let n = n - 1 in
|
|
if n = size_sub then
|
|
append_tree_ right tail
|
|
(* drop element and left tree *)
|
|
else if n < size_sub then
|
|
(* drop element and part of left tree *)
|
|
drop_tree_ ~size:size_sub n left (append_tree_ right tail)
|
|
else
|
|
(* drop element, left tree, and part of right tree *)
|
|
drop_tree_ ~size:size_sub (n - size_sub) right tail
|
|
)
|
|
|
|
let rec drop n l =
|
|
match l with
|
|
| _ when n = 0 -> l
|
|
| Nil -> Nil
|
|
| Cons (size, t, tl) ->
|
|
if n >= size then
|
|
drop (n - size) tl
|
|
else
|
|
drop_tree_ ~size n t tl
|
|
|
|
let drop_while ~f l =
|
|
let rec aux p st =
|
|
match st with
|
|
| St_nil -> Nil
|
|
| St_list (Nil, st') -> aux p st'
|
|
| St_list (Cons (_, t, tail), st') ->
|
|
aux p (St_tree (t, St_list (tail, st')))
|
|
| St_tree (Leaf x, st') ->
|
|
if p x then
|
|
aux p st'
|
|
else
|
|
cons x (stack_to_list st')
|
|
| St_tree ((Node (x, l, r) as tree), st') ->
|
|
if p x then
|
|
aux p (St_tree (l, St_tree (r, st')))
|
|
else
|
|
append_tree_ tree (stack_to_list st')
|
|
in
|
|
aux f (St_list (l, St_nil))
|
|
|
|
let take_drop n l = take n l, drop n l
|
|
|
|
let equal ~eq l1 l2 =
|
|
let rec aux ~eq l1 l2 =
|
|
match l1, l2 with
|
|
| Nil, Nil -> true
|
|
| Cons (size1, t1, l1'), Cons (size2, t2, l2') ->
|
|
size1 = size2 && aux_t ~eq t1 t2 && aux ~eq l1' l2'
|
|
| Nil, Cons _ | Cons _, Nil -> false
|
|
and aux_t ~eq t1 t2 =
|
|
match t1, t2 with
|
|
| Leaf x, Leaf y -> eq x y
|
|
| Node (x1, l1, r1), Node (x2, l2, r2) ->
|
|
eq x1 x2 && aux_t ~eq l1 l2 && aux_t ~eq r1 r2
|
|
| Leaf _, Node _ | Node _, Leaf _ -> false
|
|
in
|
|
aux ~eq l1 l2
|
|
|
|
(** {2 Utils} *)
|
|
|
|
let make n x =
|
|
let rec aux n acc x =
|
|
if n <= 0 then
|
|
acc
|
|
else
|
|
aux (n - 1) (cons x acc) x
|
|
in
|
|
aux n empty x
|
|
|
|
let repeat n l =
|
|
let rec aux n l acc =
|
|
if n <= 0 then
|
|
acc
|
|
else
|
|
aux (n - 1) l (append l acc)
|
|
in
|
|
aux n l empty
|
|
|
|
let range i j =
|
|
let rec aux i j acc =
|
|
if i = j then
|
|
cons i acc
|
|
else if i < j then
|
|
aux i (j - 1) (cons j acc)
|
|
else
|
|
aux i (j + 1) (cons j acc)
|
|
in
|
|
aux i j empty
|
|
|
|
let range_r_open_ i j =
|
|
if i = j then
|
|
empty
|
|
else if i < j then
|
|
range i (j - 1)
|
|
else
|
|
range i (j + 1)
|
|
|
|
(** {2 Conversions} *)
|
|
|
|
type 'a iter = ('a -> unit) -> unit
|
|
type 'a gen = unit -> 'a option
|
|
|
|
let add_list l l2 = List.fold_left (fun acc x -> cons x acc) l (List.rev l2)
|
|
let of_list l = add_list empty l
|
|
let to_list l = fold_rev ~f:(fun acc x -> x :: acc) ~x:[] l
|
|
let add_array l a = Array.fold_right cons a l
|
|
let of_array a = add_array empty a
|
|
|
|
let to_array l =
|
|
match l with
|
|
| Nil -> [||]
|
|
| Cons (_, Leaf x, _) | Cons (_, Node (x, _, _), _) ->
|
|
let len = length l in
|
|
let arr = Array.make len x in
|
|
iteri ~f:(fun i x -> Array.set arr i x) l;
|
|
arr
|
|
|
|
let of_iter s =
|
|
let l = ref empty in
|
|
s (fun x -> l := cons x !l);
|
|
rev !l
|
|
|
|
let add_iter l s =
|
|
let l1 = ref empty in
|
|
s (fun x -> l1 := cons x !l1);
|
|
fold ~f:(fun acc x -> cons x acc) ~x:l !l1
|
|
|
|
let to_iter l yield = iter ~f:yield l
|
|
|
|
let rec gen_iter_ f g =
|
|
match g () with
|
|
| None -> ()
|
|
| Some x ->
|
|
f x;
|
|
gen_iter_ f g
|
|
|
|
let add_gen l g =
|
|
let l1 = ref empty in
|
|
gen_iter_ (fun x -> l1 := cons x !l1) g;
|
|
fold ~f:(fun acc x -> cons x acc) ~x:l !l1
|
|
|
|
let of_gen g = add_gen empty g
|
|
|
|
let to_gen l =
|
|
let st = Stack.create () in
|
|
(* stack for tree *)
|
|
let l = ref l in
|
|
(* tail of list *)
|
|
let rec next () =
|
|
if Stack.is_empty st then (
|
|
match !l with
|
|
| Nil -> None
|
|
| Cons (_, t, tl) ->
|
|
l := tl;
|
|
Stack.push t st;
|
|
next ()
|
|
) else (
|
|
match Stack.pop st with
|
|
| Leaf x -> Some x
|
|
| Node (x, l, r) ->
|
|
Stack.push r st;
|
|
Stack.push l st;
|
|
Some x
|
|
)
|
|
in
|
|
next
|
|
|
|
let rec of_list_map ~f l =
|
|
match l with
|
|
| [] -> empty
|
|
| x :: l' ->
|
|
let y = f x in
|
|
cons y (of_list_map ~f l')
|
|
|
|
let compare ~cmp l1 l2 =
|
|
let rec cmp_gen ~cmp g1 g2 =
|
|
match g1 (), g2 () with
|
|
| None, None -> 0
|
|
| Some _, None -> 1
|
|
| None, Some _ -> -1
|
|
| Some x, Some y ->
|
|
let c = cmp x y in
|
|
if c <> 0 then
|
|
c
|
|
else
|
|
cmp_gen ~cmp g1 g2
|
|
in
|
|
cmp_gen ~cmp (to_gen l1) (to_gen l2)
|
|
|
|
(** {2 Infix} *)
|
|
|
|
module Infix = struct
|
|
let ( @+ ) = cons
|
|
let ( >>= ) l f = flat_map f l
|
|
let ( >|= ) l f = map ~f l
|
|
let ( <*> ) = app
|
|
let ( -- ) = range
|
|
let ( --^ ) = range_r_open_
|
|
end
|
|
|
|
include Infix
|
|
|
|
(** {2 IO} *)
|
|
|
|
type 'a printer = Format.formatter -> 'a -> unit
|
|
|
|
let pp ?(pp_sep = fun fmt () -> Format.fprintf fmt ",@ ") pp_item fmt l =
|
|
let first = ref true in
|
|
iter l ~f:(fun x ->
|
|
if !first then
|
|
first := false
|
|
else
|
|
pp_sep fmt ();
|
|
pp_item fmt x);
|
|
()
|