ocaml-containers/src/core/CCArrayLabels.mli
2022-09-30 20:53:40 +02:00

360 lines
13 KiB
OCaml

(* This file is free software, part of containers. See file "license" for more details. *)
(** Array utils (Labeled version of {!CCArray}) *)
type 'a iter = ('a -> unit) -> unit
(** Fast internal iterator.
@since 2.8 *)
type 'a gen = unit -> 'a option
type 'a equal = 'a -> 'a -> bool
type 'a ord = 'a -> 'a -> int
type 'a random_gen = Random.State.t -> 'a
type 'a printer = Format.formatter -> 'a -> unit
(** {2 Arrays} *)
[@@@if ge 4.8]
include module type of ArrayLabels with module Floatarray = Array.Floatarray
(** @inline
{{: https://caml.inria.fr/pub/docs/manual-ocaml/libref/Array.html} Documentation for the standard Array module}*)
[@@@elif ge 4.6]
include module type of ArrayLabels with module Floatarray = Array.Floatarray
(** @inline
{{: https://caml.inria.fr/pub/docs/manual-ocaml/libref/Array.html} Documentation for the standard Array module}*)
type 'a t = 'a array
[@@@else_]
include module type of ArrayLabels
(** @inline
{{: https://caml.inria.fr/pub/docs/manual-ocaml/libref/Array.html} Documentation for the standard Array module}*)
module Floatarray = CCArray.Floatarray
type 'a t = 'a array
[@@@endif]
val empty : 'a t
(** [empty] is the empty array, physically equal to [[||]]. *)
val equal : 'a equal -> 'a t equal
(** [equal eq a1 a2] is [true] if the lengths of [a1] and [a2] are the same
and if their corresponding elements test equal, using [eq]. *)
val compare : 'a ord -> 'a t ord
(** [compare cmp a1 a2] compares arrays [a1] and [a2] using the function comparison [cmp]. *)
val swap : 'a t -> int -> int -> unit
(** [swap a i j] swaps elements at indices [i] and [j].
@since 1.4 *)
val get_safe : 'a t -> int -> 'a option
(** [get_safe a i] returns [Some a.(i)] if [i] is a valid index.
@since 0.18 *)
val map_inplace : f:('a -> 'a) -> 'a t -> unit
(** [map_inplace ~f a] replace all elements of [a] by its image by [f].
@since 3.8 *)
val fold : f:('a -> 'b -> 'a) -> init:'a -> 'b t -> 'a
(** [fold ~f ~init a] computes [f ((f (f init a.(0)) a.(1))) a.(n-1)],
where [n] is the length of the array [a].
Same as {!ArrayLabels.fold_left} *)
val foldi : f:('a -> int -> 'b -> 'a) -> init:'a -> 'b t -> 'a
(** [foldi ~f ~init a] is just like {!fold}, but it also passes in the index
of each element as the second argument to the folded function [f]. *)
val fold_while :
f:('a -> 'b -> 'a * [ `Stop | `Continue ]) -> init:'a -> 'b t -> 'a
(** [fold_while ~f ~init a] folds left on array [a] until a stop condition via [('a, `Stop)]
is indicated by the accumulator.
@since 0.8 *)
val fold_map : f:('acc -> 'a -> 'acc * 'b) -> init:'acc -> 'a t -> 'acc * 'b t
(** [fold_map ~f ~init a] is a [fold_left]-like function, but it also maps the
array to another array.
@since 1.2, but only
@since 2.1 with labels *)
val scan_left : f:('acc -> 'a -> 'acc) -> init:'acc -> 'a t -> 'acc t
(** [scan_left ~f ~init a] returns the array
[ [|init; f init x0; f (f init a.(0)) a.(1); …|] ].
@since 1.2, but only
@since 2.1 with labels *)
val reverse_in_place : 'a t -> unit
(** [reverse_in_place a] reverses the array [a] in place. *)
val sorted : f:('a -> 'a -> int) -> 'a t -> 'a array
(** [sorted ~f a] makes a copy of [a] and sorts it with [f].
@since 1.0 *)
val sort_indices : f:('a -> 'a -> int) -> 'a t -> int array
(** [sort_indices ~f a] returns a new array [b], with the same length as [a],
such that [b.(i)] is the index at which the [i]-th element of [sorted f a]
appears in [a]. [a] is not modified.
In other words, [map (fun i -> a.(i)) (sort_indices f a) = sorted f a].
[sort_indices] yields the inverse permutation of {!sort_ranking}.
@since 1.0 *)
val sort_ranking : f:('a -> 'a -> int) -> 'a t -> int array
(** [sort_ranking ~f a] returns a new array [b], with the same length as [a],
such that [b.(i)] is the index at which the [i]-th element of [a] appears
in [sorted f a]. [a] is not modified.
In other words, [map (fun i -> (sorted f a).(i)) (sort_ranking f a) = a].
[sort_ranking] yields the inverse permutation of {!sort_indices}.
In the absence of duplicate elements in [a], we also have
[lookup_exn a.(i) (sorted a) = (sorted_ranking a).(i)].
@since 1.0 *)
val mem : ?eq:('a -> 'a -> bool) -> 'a -> 'a t -> bool
(** [mem ~eq x a] return true if x is present in [a]. Linear time.
@since 3.0
*)
val find_map : f:('a -> 'b option) -> 'a t -> 'b option
(** [find_map ~f a] returns [Some y] if there is an element [x] such
that [f x = Some y]. Otherwise returns [None].
@since 1.3, but only
@since 2.1 with labels *)
val find_map_i : f:(int -> 'a -> 'b option) -> 'a t -> 'b option
(** [find_map_i ~f a] is like {!find_map}, but the index of the element is also passed
to the predicate function [f].
@since 1.3, but only
@since 2.1 with labels *)
val find_idx : f:('a -> bool) -> 'a t -> (int * 'a) option
(** [find_idx ~f a] returns [Some (i,x)] where [x] is the [i]-th element of [a],
and [f x] holds. Otherwise returns [None].
@since 0.3.4 *)
val lookup : cmp:('a ord[@keep_label]) -> key:'a -> 'a t -> int option
(** [lookup ~cmp ~key a] lookups the index of some key [key] in a sorted array [a].
Undefined behavior if the array [a] is not sorted wrt [cmp].
Complexity: [O(log (n))] (dichotomic search).
@return [None] if the key [key] is not present, or
[Some i] ([i] the index of the key) otherwise. *)
val lookup_exn : cmp:('a ord[@keep_label]) -> key:'a -> 'a t -> int
(** [lookup_exn ~cmp ~key a] is like {!lookup}, but
@raise Not_found if the key [key] is not present. *)
val bsearch :
cmp:(('a -> 'a -> int)[@keep_label]) ->
key:'a ->
'a t ->
[ `All_lower | `All_bigger | `Just_after of int | `Empty | `At of int ]
(** [bsearch ~cmp ~key a] finds the index of the object [key] in the array [a],
provided [a] is {b sorted} using [cmp]. If the array is not sorted,
the result is not specified (may raise Invalid_argument).
Complexity: [O(log n)] where n is the length of the array [a]
(dichotomic search).
@return
- [`At i] if [cmp a.(i) key = 0] (for some i).
- [`All_lower] if all elements of [a] are lower than [key].
- [`All_bigger] if all elements of [a] are bigger than [key].
- [`Just_after i] if [a.(i) < key < a.(i+1)].
- [`Empty] if the array [a] is empty.
@raise Invalid_argument if the array is found to be unsorted w.r.t [cmp].
@since 0.13 *)
val for_all2 : f:('a -> 'b -> bool) -> 'a t -> 'b t -> bool
(** [for_all2 ~f [|a1; …; an|] [|b1; …; bn|]] is [true] if each pair of elements [ai bi]
satisfies the predicate [f].
That is, it returns [(f a1 b1) && (f a2 b2) && … && (f an bn)].
@raise Invalid_argument if arrays have distinct lengths.
Allow different types.
@since 0.20 *)
val exists2 : f:('a -> 'b -> bool) -> 'a t -> 'b t -> bool
(** [exists2 ~f [|a1; …; an|] [|b1; …; bn|]] is [true] if any pair of elements [ai bi]
satisfies the predicate [f].
That is, it returns [(f a1 b1) || (f a2 b2) || … || (f an bn)].
@raise Invalid_argument if arrays have distinct lengths.
Allow different types.
@since 0.20 *)
val fold2 : f:('acc -> 'a -> 'b -> 'acc) -> init:'acc -> 'a t -> 'b t -> 'acc
(** [fold2 ~f ~init a b] fold on two arrays [a] and [b] stepwise.
It computes [f ((f init a1 b1)) an bn].
@raise Invalid_argument if [a] and [b] have distinct lengths.
@since 0.20 *)
val iter2 : f:('a -> 'b -> unit) -> 'a t -> 'b t -> unit
(** [iter2 ~f a b] iterates on the two arrays [a] and [b] stepwise.
It is equivalent to [f a0 b0; …; f a.(length a - 1) b.(length b - 1); ()].
@raise Invalid_argument if [a] and [b] have distinct lengths.
@since 0.20 *)
val shuffle : 'a t -> unit
(** [shuffle a] randomly shuffles the array [a], in place. *)
val shuffle_with : Random.State.t -> 'a t -> unit
(** [shuffle_with rs a] randomly shuffles the array [a] (like {!shuffle}) but a specialized random
state [rs] is used to control the random numbers being produced during shuffling (for reproducibility). *)
val random_choose : 'a t -> 'a random_gen
(** [random_choose a rs] randomly chooses an element of [a].
@raise Not_found if the array/slice is empty. *)
val to_string : ?sep:string -> ('a -> string) -> 'a array -> string
(** [to_string ~sep item_to_string a] print [a] to a string using [sep] as a separator
between elements of [a].
@since 2.7 *)
val to_iter : 'a t -> 'a iter
(** [to_iter a] returns an [iter] of the elements of an array [a].
The input array [a] is shared with the sequence and modification of it will result
in modification of the iterator.
@since 2.8 *)
val to_seq : 'a t -> 'a Seq.t
(** [to_seq a] returns a [Seq.t] of the elements of an array [a].
The input array [a] is shared with the sequence and modification of it will result
in modification of the sequence.
Renamed from [to_std_seq] since 3.0.
@since 3.0
*)
val to_gen : 'a t -> 'a gen
(** [to_gen a] returns a [gen] of the elements of an array [a]. *)
(** {2 IO} *)
val pp :
?pp_start:unit printer ->
?pp_stop:unit printer ->
?pp_sep:unit printer ->
'a printer ->
'a t printer
(** [pp ~pp_start ~pp_stop ~pp_sep pp_item ppf a] formats the array [a] on [ppf].
Each element is formatted with [pp_item], [pp_start] is called at the beginning,
[pp_stop] is called at the end, [pp_sep] is called between each elements.
By defaults [pp_start] and [pp_stop] does nothing and [pp_sep] defaults to
(fun out -> Format.fprintf out ",@ "). *)
val pp_i :
?pp_start:unit printer ->
?pp_stop:unit printer ->
?pp_sep:unit printer ->
(int -> 'a printer) ->
'a t printer
(** [pp_i ~pp_start ~pp_stop ~pp_sep pp_item ppf a] prints the array [a] on [ppf].
The printing function [pp_item] is giving both index and element.
[pp_start] is called at the beginning,
[pp_stop] is called at the end, [pp_sep] is called between each elements.
By defaults [pp_start] and [pp_stop] does nothing and [pp_sep] defaults to
(fun out -> Format.fprintf out ",@ "). *)
val map2 : f:('a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t
(** [map2 ~f a b] applies function [f] to all elements of [a] and [b],
and builds an array with the results returned by [f]:
[[| f a.(0) b.(0); …; f a.(length a - 1) b.(length b - 1)|]].
@raise Invalid_argument if [a] and [b] have distinct lengths.
@since 0.20 *)
val rev : 'a t -> 'a t
(** [rev a] copies the array [a] and reverses it in place.
@since 0.20 *)
val filter : f:('a -> bool) -> 'a t -> 'a t
(** [filter ~f a] filters elements out of the array [a]. Only the elements satisfying
the given predicate [f] will be kept. *)
val filter_map : f:('a -> 'b option) -> 'a t -> 'b t
(** [filter_map ~f [|a1; …; an|]] calls [(f a1)(f an)] and returns an array [b] consisting
of all elements [bi] such as [f ai = Some bi]. When [f] returns [None], the corresponding
element of [a] is discarded. *)
val monoid_product : f:('a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t
(** [monoid_product ~f a b] passes all combinaisons of tuples from the two arrays [a] and [b]
to the function [f].
@since 2.8 *)
val flat_map : f:('a -> 'b t) -> 'a t -> 'b array
(** [flat_map ~f a] transforms each element of [a] into an array, then flattens. *)
val except_idx : 'a t -> int -> 'a list
(** [except_idx a i] removes the element of [a] at given index [i], and returns
the list of the other elements. *)
val random : 'a random_gen -> 'a t random_gen
val random_non_empty : 'a random_gen -> 'a t random_gen
val random_len : int -> 'a random_gen -> 'a t random_gen
(** {2 Generic Functions} *)
module type MONO_ARRAY = sig
type elt
type t
val length : t -> int
val get : t -> int -> elt
val set : t -> int -> elt -> unit
end
val sort_generic :
(module MONO_ARRAY with type t = 'arr and type elt = 'elt) ->
cmp:(('elt -> 'elt -> int)[@keep_label]) ->
'arr ->
unit
(** [sort_generic (module M) ~cmp a] sorts the array [a], without allocating (eats stack space though).
Performance might be lower than {!Array.sort}.
@since 0.14 *)
(** {3 Infix Operators}
It is convenient to {!open CCArray.Infix} to access the infix operators
without cluttering the scope too much.
@since 2.7 *)
module Infix : sig
val ( >>= ) : 'a t -> ('a -> 'b t) -> 'b t
(** [a >>= f] is the infix version of {!flat_map}. *)
val ( >>| ) : 'a t -> ('a -> 'b) -> 'b t
(** [a >>| f] is the infix version of {!map}.
@since 0.8 *)
val ( >|= ) : 'a t -> ('a -> 'b) -> 'b t
(** [a >|= f] is the infix version of {!map}.
@since 0.8 *)
val ( -- ) : int -> int -> int t
(** [x -- y] creates an array containing integers in the range [x .. y]. Bounds included. *)
val ( --^ ) : int -> int -> int t
(** [x --^ y] creates an array containing integers in the range [x .. y]. Right bound excluded.
@since 0.17 *)
[@@@if ge 4.8]
include CCShims_syntax.LET with type 'a t := 'a array
(** Let operators on OCaml >= 4.08.0, nothing otherwise
@since 2.8
@inline *)
[@@@endif]
end
include module type of Infix