ocaml-containers/core/CCKTree.ml
2014-06-25 03:28:41 +02:00

292 lines
7.8 KiB
OCaml

(*
copyright (c) 2013-2014, simon cruanes
all rights reserved.
redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with
the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*)
(** {1 Lazy Tree Structure}
This structure can be used to represent trees and directed
graphs (as infinite trees) in a lazy fashion. Like {!CCKList}, it
is a structural type. *)
type 'a sequence = ('a -> unit) -> unit
type 'a gen = unit -> 'a option
type 'a klist = unit -> [`Nil | `Cons of 'a * 'a klist]
type 'a printer = Buffer.t -> 'a -> unit
type +'a t = unit -> [`Nil | `Node of 'a * 'a t list]
let empty () = `Nil
let is_empty t = match t() with
| `Nil -> true
| `Node _ -> false
let singleton x () = `Node (x, [])
let node x l () = `Node(x,l)
let node1 x t () = `Node(x,[t])
let node2 x t1 t2 () = `Node(x,[t1;t2])
let rec fold f acc t = match t() with
| `Nil -> acc
| `Node (x,l) ->
let acc = f acc x in
List.fold_left (fold f) acc l
let rec iter f t = match t() with
| `Nil -> ()
| `Node(x,l) -> f x; List.iter (iter f) l
let size t = fold (fun n _ -> n+1) 0 t
let height t =
let rec aux t k = match t() with
| `Nil -> k 0
| `Node (_, l) -> aux_l 0 l k
and aux_l acc l k = match l with
| [] -> k acc
| t'::l' ->
aux t' (fun n -> aux_l (max acc n) l' k)
in aux t (fun x->x)
let rec map f t () = match t() with
| `Nil -> `Nil
| `Node(x,l) ->
`Node (f x, List.map (map f) l)
let (>|=) t f = map f t
let rec cut_depth n t () = match t() with
| `Nil -> `Nil
| `Node _ when n=0 -> `Nil
| `Node(x,l) ->
`Node(x, List.map (cut_depth (n-1)) l)
(** {2 Graph Traversals} *)
(** Abstract Set structure *)
class type ['a] pset = object
method add : 'a -> 'a pset
method mem : 'a -> bool
end
let set_of_cmp (type elt) ?(cmp=Pervasives.compare) () =
let module S = Set.Make(struct
type t = elt
let compare = cmp
end) in
object
val s = S.empty
method add x = {< s = S.add x s >}
method mem x = S.mem x s
end
let _nil () = `Nil
let _cons x l = `Cons (x, l)
let dfs ?(pset=set_of_cmp ()) t =
let rec dfs pset stack () = match stack with
| [] -> `Nil
| `Explore t :: stack' ->
begin match t() with
| `Nil -> dfs pset stack' ()
| `Node (x, _) when pset#mem x ->
dfs pset stack' () (* loop *)
| `Node (x, l) ->
let pset' = pset#add x in
let stack' =
List.rev_append (List.rev_map (fun x -> `Explore x) l) (`Exit x :: stack')
in
_cons (`Enter x) (dfs pset' stack')
end
| `Exit x :: stack' ->
_cons (`Exit x) (dfs pset stack')
in
dfs pset [`Explore t]
(** Functional queues for BFS *)
module FQ = struct
type 'a t = {
hd : 'a list;
tl : 'a list;
}
exception Empty
(* invariant: if hd=[], then tl=[] *)
let _make hd tl = match hd with
| [] -> {hd=List.rev tl; tl=[] }
| _::_ -> {hd; tl; }
let empty = _make [] []
let is_empty q = q.hd = []
let push q x = _make q.hd (x::q.tl)
let pop_exn q =
match q.hd with
| [] -> assert (q.tl = []); raise Empty
| x::hd' ->
let q' = _make hd' q.tl in
x, q'
end
let bfs ?(pset=set_of_cmp ()) t =
let rec bfs pset q () =
if FQ.is_empty q then `Nil
else
let t, q' = FQ.pop_exn q in
match t() with
| `Nil -> bfs pset q' ()
| `Node(x,_) when pset#mem x ->
bfs pset q' () (* loop *)
| `Node(x,l) ->
let q' = List.fold_left FQ.push q' l in
let pset' = pset#add x in
_cons x (bfs pset' q')
in
bfs pset (FQ.push FQ.empty t)
let find ?pset f t =
let rec _find_kl f l = match l() with
| `Nil -> None
| `Cons (x, l') ->
match f x with
| None -> _find_kl f l'
| Some _ as res -> res
in
bfs ?pset t |> _find_kl f
(** {2 Pretty printing in the DOT (graphviz) format} *)
module Dot = struct
type attribute = [
| `Color of string
| `Shape of string
| `Weight of int
| `Style of string
| `Label of string
| `Id of string
| `Other of string * string
] (** Dot attributes for nodes *)
type graph = (string * attribute list t list)
(** A dot graph is a name, plus a list of trees labelled with attributes *)
let mk_id format =
let buf = Buffer.create 64 in
Printf.kbprintf
(fun fmt -> `Id (Buffer.contents buf))
buf
format
let mk_label format =
let buf = Buffer.create 64 in
Printf.kbprintf
(fun fmt -> `Label(Buffer.contents buf))
buf
format
let make ~name l = (name,l)
let singleton ~name t = (name, [t])
(* find and remove the `Id attribute, if any *)
let rec _find_id acc l = match l with
| [] -> raise Not_found
| `Id n :: l' -> n, List.rev_append acc l'
| x :: l' -> _find_id (x::acc) l'
let _pp_attr buf attr = match attr with
| `Color c -> Printf.bprintf buf "color=%s" c
| `Shape s -> Printf.bprintf buf "shape=%s" s
| `Weight w -> Printf.bprintf buf "weight=%d" w
| `Style s -> Printf.bprintf buf "style=%s" s
| `Label l -> Printf.bprintf buf "label=\"%s\"" l
| `Other (name, value) -> Printf.bprintf buf "%s=\"%s\"" name value
| `Id _ -> () (* should not be here *)
let rec _pp_attrs buf l = match l with
| [] -> ()
| [x] -> _pp_attr buf x
| x::l' ->
_pp_attr buf x;
Buffer.add_char buf ',';
_pp_attrs buf l'
let pp buf (name,l) =
(* nodes already printed *)
let tbl = Hashtbl.create 32 in
(* fresh name generator *)
let new_name =
let n = ref 0 in
fun () ->
let s = Printf.sprintf "node_%d" !n in
incr n; s
in
(* the name for some node is either defined, either a fresh random
name *)
let get_name x =
try _find_id [] x
with Not_found -> new_name (), x
in
(* recursive printing (bfs) *)
let rec aux q =
if FQ.is_empty q
then ()
else
let (parent,x), q' = FQ.pop_exn q in
let q' = pp_node q' ?parent x in
aux q'
and pp_node q ?parent t = match t() with
| `Nil -> q
| `Node (x,l) ->
let name, attrs = get_name x in
begin match parent with
| None -> ()
| Some n -> Printf.bprintf buf " %s -> %s;\n" n name
end;
if not (Hashtbl.mem tbl name) then (
Hashtbl.add tbl name ();
Printf.bprintf buf " %s [%a];\n" name _pp_attrs attrs;
List.fold_left
(fun q y -> FQ.push q (Some name, y)) q l
) else q
in
let q =
List.fold_left
(fun q y -> FQ.push q (None, y))
FQ.empty l
in
(* preamble *)
Printf.bprintf buf "digraph %s {\n" name;
aux q;
Printf.bprintf buf "}\n";
()
let pp_single name buf t = pp buf (singleton name t)
end