mirror of
https://github.com/c-cube/ocaml-containers.git
synced 2025-12-06 11:15:31 -05:00
772 lines
18 KiB
OCaml
772 lines
18 KiB
OCaml
(*
|
|
Copyright (c) 2013, Simon Cruanes
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
Redistributions of source code must retain the above copyright notice, this
|
|
list of conditions and the following disclaimer. Redistributions in binary
|
|
form must reproduce the above copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other materials provided with
|
|
the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*)
|
|
|
|
(** {1 Transient iterators, that abstract on a finite sequence of elements.} *)
|
|
|
|
(** Sequence abstract iterator type *)
|
|
type 'a t = ('a -> unit) -> unit
|
|
|
|
type 'a sequence = 'a t
|
|
|
|
type (+'a, +'b) t2 = ('a -> 'b -> unit) -> unit
|
|
(** Sequence of pairs of values of type ['a] and ['b]. *)
|
|
|
|
(** Build a sequence from a iter function *)
|
|
let from_iter f = f
|
|
|
|
let rec from_fun f k = match f () with
|
|
| None -> ()
|
|
| Some x -> k x; from_fun f k
|
|
|
|
let empty k = ()
|
|
|
|
let singleton x k = k x
|
|
let return x k = k x
|
|
let pure f k = k f
|
|
|
|
let doubleton x y k = k x; k y
|
|
|
|
let cons x l k = k x; l k
|
|
let snoc l x k = l k; k x
|
|
|
|
let repeat x k = while true do k x done
|
|
|
|
let rec iterate f x k =
|
|
k x;
|
|
iterate f (f x) k
|
|
|
|
let rec forever f k =
|
|
k (f ());
|
|
forever f k
|
|
|
|
let cycle s k = while true do s k; done
|
|
|
|
let iter f seq = seq f
|
|
|
|
let iteri f seq =
|
|
let r = ref 0 in
|
|
seq
|
|
(fun x ->
|
|
f !r x;
|
|
incr r)
|
|
|
|
let fold f init seq =
|
|
let r = ref init in
|
|
seq (fun elt -> r := f !r elt);
|
|
!r
|
|
|
|
let foldi f init seq =
|
|
let i = ref 0 in
|
|
let r = ref init in
|
|
seq
|
|
(fun elt ->
|
|
r := f !r !i elt;
|
|
incr i);
|
|
!r
|
|
|
|
let map f seq k = seq (fun x -> k (f x))
|
|
|
|
let mapi f seq k =
|
|
let i = ref 0 in
|
|
seq (fun x -> k (f !i x); incr i)
|
|
|
|
let filter p seq k = seq (fun x -> if p x then k x)
|
|
|
|
let append s1 s2 k = s1 k; s2 k
|
|
|
|
let concat s k = s (fun s' -> s' k)
|
|
|
|
let flatten s = concat s
|
|
|
|
let flatMap f seq k = seq (fun x -> f x k)
|
|
|
|
let flat_map = flatMap
|
|
|
|
let fmap f seq k =
|
|
seq (fun x -> match f x with
|
|
| None -> ()
|
|
| Some y -> k y
|
|
)
|
|
|
|
let filter_map = fmap
|
|
|
|
let intersperse elem seq k =
|
|
let first = ref true in
|
|
seq (fun x -> (if !first then first := false else k elem); k x)
|
|
|
|
(** Mutable unrolled list to serve as intermediate storage *)
|
|
module MList = struct
|
|
type 'a node =
|
|
| Nil
|
|
| Cons of 'a array * int ref * 'a node ref
|
|
|
|
(* build and call callback on every element *)
|
|
let of_seq_with seq k =
|
|
let start = ref Nil in
|
|
let chunk_size = ref 8 in
|
|
(* fill the list. prev: tail-reference from previous node *)
|
|
let prev, cur = ref start, ref Nil in
|
|
seq
|
|
(fun x ->
|
|
k x; (* callback *)
|
|
match !cur with
|
|
| Nil ->
|
|
let n = !chunk_size in
|
|
if n < 4096 then chunk_size := 2 * !chunk_size;
|
|
cur := Cons (Array.make n x, ref 1, ref Nil)
|
|
| Cons (a,n,next) ->
|
|
assert (!n < Array.length a);
|
|
a.(!n) <- x;
|
|
incr n;
|
|
if !n = Array.length a then begin
|
|
!prev := !cur;
|
|
prev := next;
|
|
cur := Nil
|
|
end
|
|
);
|
|
!prev := !cur;
|
|
!start
|
|
|
|
let of_seq seq =
|
|
of_seq_with seq (fun _ -> ())
|
|
|
|
let is_empty = function
|
|
| Nil -> true
|
|
| Cons _ -> false
|
|
|
|
let rec iter f l = match l with
|
|
| Nil -> ()
|
|
| Cons (a, n, tl) ->
|
|
for i=0 to !n - 1 do f a.(i) done;
|
|
iter f !tl
|
|
|
|
let iteri f l =
|
|
let rec iteri i f l = match l with
|
|
| Nil -> ()
|
|
| Cons (a, n, tl) ->
|
|
for j=0 to !n - 1 do f (i+j) a.(j) done;
|
|
iteri (i+ !n) f !tl
|
|
in iteri 0 f l
|
|
|
|
let rec iter_rev f l = match l with
|
|
| Nil -> ()
|
|
| Cons (a, n, tl) ->
|
|
iter_rev f !tl;
|
|
for i = !n-1 downto 0 do f a.(i) done
|
|
|
|
let length l =
|
|
let rec len acc l = match l with
|
|
| Nil -> acc
|
|
| Cons (_, n, tl) -> len (acc+ !n) !tl
|
|
in len 0 l
|
|
|
|
(** Get element by index *)
|
|
let rec get l i = match l with
|
|
| Nil -> raise (Invalid_argument "MList.get")
|
|
| Cons (a, n, _) when i < !n -> a.(i)
|
|
| Cons (_, n, tl) -> get !tl (i- !n)
|
|
|
|
let to_seq l k = iter k l
|
|
|
|
let _to_next arg l =
|
|
let cur = ref l in
|
|
let i = ref 0 in (* offset in cons *)
|
|
let rec get_next _ = match !cur with
|
|
| Nil -> None
|
|
| Cons (_, n, tl) when !i = !n ->
|
|
cur := !tl;
|
|
i := 0;
|
|
get_next arg
|
|
| Cons (a, n, _) ->
|
|
let x = a.(!i) in
|
|
incr i;
|
|
Some x
|
|
in get_next
|
|
|
|
let to_gen l = _to_next () l
|
|
|
|
let to_stream l =
|
|
Stream.from (_to_next 42 l) (* 42=magic cookiiiiiie *)
|
|
|
|
let to_klist l =
|
|
let rec make (l,i) () = match l with
|
|
| Nil -> `Nil
|
|
| Cons (_, n, tl) when i = !n -> make (!tl,0) ()
|
|
| Cons (a, n, _) -> `Cons (a.(i), make (l,i+1))
|
|
in make (l,0)
|
|
end
|
|
|
|
let persistent seq =
|
|
let l = MList.of_seq seq in
|
|
MList.to_seq l
|
|
|
|
type 'a lazy_state =
|
|
| LazySuspend
|
|
| LazyCached of 'a t
|
|
|
|
let persistent_lazy (seq:'a t) =
|
|
let r = ref LazySuspend in
|
|
fun k ->
|
|
match !r with
|
|
| LazyCached seq' -> seq' k
|
|
| LazySuspend ->
|
|
(* here if this traversal is interruted, no caching occurs *)
|
|
let seq' = MList.of_seq_with seq k in
|
|
r := LazyCached (MList.to_seq seq')
|
|
|
|
let sort ?(cmp=Pervasives.compare) seq =
|
|
(* use an intermediate list, then sort the list *)
|
|
let l = fold (fun l x -> x::l) [] seq in
|
|
let l = List.fast_sort cmp l in
|
|
fun k -> List.iter k l
|
|
|
|
let group ?(eq=fun x y -> x = y) seq k =
|
|
let cur = ref [] in
|
|
seq (fun x ->
|
|
match !cur with
|
|
| [] -> cur := [x]
|
|
| (y::_) as l when eq x y ->
|
|
cur := x::l (* [x] belongs to the group *)
|
|
| (_::_) as l ->
|
|
k l; (* yield group, and start another one *)
|
|
cur := [x]);
|
|
(* last list *)
|
|
if !cur <> [] then k !cur
|
|
|
|
let uniq ?(eq=fun x y -> x = y) seq k =
|
|
let has_prev = ref false
|
|
and prev = ref (Obj.magic 0) in (* avoid option type, costly *)
|
|
seq (fun x ->
|
|
if !has_prev && eq !prev x
|
|
then () (* duplicate *)
|
|
else begin
|
|
has_prev := true;
|
|
prev := x;
|
|
k x
|
|
end)
|
|
|
|
let sort_uniq (type elt) ?(cmp=Pervasives.compare) seq =
|
|
let module S = Set.Make(struct
|
|
type t = elt
|
|
let compare = cmp
|
|
end) in
|
|
let set = fold (fun acc x -> S.add x acc) S.empty seq in
|
|
fun k -> S.iter k set
|
|
|
|
let product outer inner k =
|
|
outer (fun x ->
|
|
inner (fun y -> k (x,y))
|
|
)
|
|
|
|
let product2 outer inner k =
|
|
outer (fun x ->
|
|
inner (fun y -> k x y)
|
|
)
|
|
|
|
let join ~join_row s1 s2 k =
|
|
s1 (fun a ->
|
|
s2 (fun b ->
|
|
match join_row a b with
|
|
| None -> ()
|
|
| Some c -> k c
|
|
)
|
|
) (* yield the combination of [a] and [b] *)
|
|
|
|
let rec unfoldr f b k = match f b with
|
|
| None -> ()
|
|
| Some (x, b') ->
|
|
k x;
|
|
unfoldr f b' k
|
|
|
|
let scan f acc seq k =
|
|
k acc;
|
|
let acc = ref acc in
|
|
seq (fun elt -> let acc' = f !acc elt in k acc'; acc := acc')
|
|
|
|
let max ?(lt=fun x y -> x < y) seq =
|
|
let ret = ref None in
|
|
seq (fun x -> match !ret with
|
|
| None -> ret := Some x
|
|
| Some y -> if lt y x then ret := Some x);
|
|
!ret
|
|
|
|
let min ?(lt=fun x y -> x < y) seq =
|
|
let ret = ref None in
|
|
seq (fun x -> match !ret with
|
|
| None -> ret := Some x
|
|
| Some y -> if lt x y then ret := Some x);
|
|
!ret
|
|
|
|
exception ExitSequence
|
|
|
|
let head seq =
|
|
let r = ref None in
|
|
try
|
|
seq (fun x -> r := Some x; raise ExitSequence); None
|
|
with ExitSequence -> !r
|
|
|
|
let head_exn seq =
|
|
match head seq with
|
|
| None -> invalid_arg "Sequence.head_exn"
|
|
| Some x -> x
|
|
|
|
let take n seq k =
|
|
let count = ref 0 in
|
|
try
|
|
seq (fun x ->
|
|
if !count = n then raise ExitSequence;
|
|
incr count;
|
|
k x;
|
|
)
|
|
with ExitSequence -> ()
|
|
|
|
let take_while p seq k =
|
|
try
|
|
seq (fun x -> if p x then k x else raise ExitSequence)
|
|
with ExitSequence -> ()
|
|
|
|
let drop n seq k =
|
|
let count = ref 0 in
|
|
seq (fun x -> if !count >= n then k x else incr count)
|
|
|
|
let drop_while p seq k =
|
|
let drop = ref true in
|
|
seq (fun x ->
|
|
if !drop
|
|
then if p x then () else (drop := false; k x)
|
|
else k x)
|
|
|
|
let rev seq =
|
|
let l = MList.of_seq seq in
|
|
fun k -> MList.iter_rev k l
|
|
|
|
let for_all p seq =
|
|
try
|
|
seq (fun x -> if not (p x) then raise ExitSequence);
|
|
true
|
|
with ExitSequence -> false
|
|
|
|
(** Exists there some element satisfying the predicate? *)
|
|
let exists p seq =
|
|
try
|
|
seq (fun x -> if p x then raise ExitSequence);
|
|
false
|
|
with ExitSequence -> true
|
|
|
|
let mem ?(eq=(=)) x seq = exists (eq x) seq
|
|
|
|
let find f seq =
|
|
let r = ref None in
|
|
begin try
|
|
seq (fun x -> match f x with
|
|
| None -> ()
|
|
| Some _ as res -> r := res
|
|
);
|
|
with ExitSequence -> ()
|
|
end;
|
|
!r
|
|
|
|
let length seq =
|
|
let r = ref 0 in
|
|
seq (fun _ -> incr r);
|
|
!r
|
|
|
|
let is_empty seq =
|
|
try seq (fun _ -> raise ExitSequence); true
|
|
with ExitSequence -> false
|
|
|
|
(** {2 Transform a sequence} *)
|
|
|
|
let empty2 k = ()
|
|
|
|
let is_empty2 seq2 =
|
|
try ignore (seq2 (fun _ _ -> raise ExitSequence)); true
|
|
with ExitSequence -> false
|
|
|
|
let length2 seq2 =
|
|
let r = ref 0 in
|
|
seq2 (fun _ _ -> incr r);
|
|
!r
|
|
|
|
let zip seq2 k = seq2 (fun x y -> k (x,y))
|
|
|
|
let unzip seq k = seq (fun (x,y) -> k x y)
|
|
|
|
let zip_i seq k =
|
|
let r = ref 0 in
|
|
seq (fun x -> let n = !r in incr r; k n x)
|
|
|
|
let fold2 f acc seq2 =
|
|
let acc = ref acc in
|
|
seq2 (fun x y -> acc := f !acc x y);
|
|
!acc
|
|
|
|
let iter2 f seq2 = seq2 f
|
|
|
|
let map2 f seq2 k = seq2 (fun x y -> k (f x y))
|
|
|
|
let map2_2 f g seq2 k =
|
|
seq2 (fun x y -> k (f x y) (g x y))
|
|
|
|
(** {2 Basic data structures converters} *)
|
|
|
|
let to_list seq = List.rev (fold (fun y x -> x::y) [] seq)
|
|
|
|
let to_rev_list seq = fold (fun y x -> x :: y) [] seq
|
|
|
|
let of_list l k = List.iter k l
|
|
|
|
let on_list f l =
|
|
to_list (f (of_list l))
|
|
|
|
let to_opt = head
|
|
|
|
let of_opt o k = match o with
|
|
| None -> ()
|
|
| Some x -> k x
|
|
|
|
let to_array seq =
|
|
let l = MList.of_seq seq in
|
|
let n = MList.length l in
|
|
if n = 0
|
|
then [||]
|
|
else begin
|
|
let a = Array.make n (MList.get l 0) in
|
|
MList.iteri (fun i x -> a.(i) <- x) l;
|
|
a
|
|
end
|
|
|
|
let of_array a k =
|
|
for i = 0 to Array.length a - 1 do
|
|
k (Array.unsafe_get a i)
|
|
done
|
|
|
|
let of_array_i a k =
|
|
for i = 0 to Array.length a - 1 do
|
|
k (i, Array.unsafe_get a i)
|
|
done
|
|
|
|
let of_array2 a k =
|
|
for i = 0 to Array.length a - 1 do
|
|
k i (Array.unsafe_get a i)
|
|
done
|
|
|
|
let array_slice a i j k =
|
|
assert (i >= 0 && j < Array.length a);
|
|
for idx = i to j do
|
|
k a.(idx); (* iterate on sub-array *)
|
|
done
|
|
|
|
let of_stream s k = Stream.iter k s
|
|
|
|
let to_stream seq =
|
|
let l = MList.of_seq seq in
|
|
MList.to_stream l
|
|
|
|
let to_stack s seq = iter (fun x -> Stack.push x s) seq
|
|
|
|
let of_stack s k = Stack.iter k s
|
|
|
|
let to_queue q seq = seq (fun x -> Queue.push x q)
|
|
|
|
let of_queue q k = Queue.iter k q
|
|
|
|
let hashtbl_add h seq =
|
|
seq (fun (k,v) -> Hashtbl.add h k v)
|
|
|
|
let hashtbl_replace h seq =
|
|
seq (fun (k,v) -> Hashtbl.replace h k v)
|
|
|
|
let to_hashtbl seq =
|
|
let h = Hashtbl.create 3 in
|
|
hashtbl_replace h seq;
|
|
h
|
|
|
|
let to_hashtbl2 seq2 =
|
|
let h = Hashtbl.create 3 in
|
|
seq2 (fun k v -> Hashtbl.replace h k v);
|
|
h
|
|
|
|
let of_hashtbl h k = Hashtbl.iter (fun a b -> k (a, b)) h
|
|
|
|
let of_hashtbl2 h k = Hashtbl.iter k h
|
|
|
|
let hashtbl_keys h k = Hashtbl.iter (fun a b -> k a) h
|
|
|
|
let hashtbl_values h k = Hashtbl.iter (fun a b -> k b) h
|
|
|
|
let of_str s k = String.iter k s
|
|
|
|
let to_str seq =
|
|
let b = Buffer.create 64 in
|
|
iter (fun c -> Buffer.add_char b c) seq;
|
|
Buffer.contents b
|
|
|
|
let concat_str seq =
|
|
let b = Buffer.create 64 in
|
|
iter (Buffer.add_string b) seq;
|
|
Buffer.contents b
|
|
|
|
exception OneShotSequence
|
|
|
|
let of_in_channel ic =
|
|
let first = ref true in
|
|
fun k ->
|
|
if not !first
|
|
then raise OneShotSequence
|
|
else (
|
|
first := false;
|
|
try
|
|
while true do
|
|
let c = input_char ic in k c
|
|
done
|
|
with End_of_file -> ()
|
|
)
|
|
|
|
let to_buffer seq buf =
|
|
seq (fun c -> Buffer.add_char buf c)
|
|
|
|
(** Iterator on integers in [start...stop] by steps 1 *)
|
|
let int_range ~start ~stop k =
|
|
for i = start to stop do k i done
|
|
|
|
let int_range_dec ~start ~stop k =
|
|
for i = start downto stop do k i done
|
|
|
|
let of_set (type s) (type v) m set =
|
|
let module S = (val m : Set.S with type t = s and type elt = v) in
|
|
fun k -> S.iter k set
|
|
|
|
let to_set (type s) (type v) m seq =
|
|
let module S = (val m : Set.S with type t = s and type elt = v) in
|
|
fold
|
|
(fun set x -> S.add x set)
|
|
S.empty seq
|
|
|
|
type 'a gen = unit -> 'a option
|
|
type 'a klist = unit -> [`Nil | `Cons of 'a * 'a klist]
|
|
|
|
let of_gen g =
|
|
(* consume the generator to build a MList *)
|
|
let rec iter1 k = match g () with
|
|
| None -> ()
|
|
| Some x -> k x; iter1 k
|
|
in
|
|
let l = MList.of_seq iter1 in
|
|
MList.to_seq l
|
|
|
|
let to_gen seq =
|
|
let l = MList.of_seq seq in
|
|
MList.to_gen l
|
|
|
|
let rec of_klist l k = match l() with
|
|
| `Nil -> ()
|
|
| `Cons (x,tl) -> k x; of_klist tl k
|
|
|
|
let to_klist seq =
|
|
let l = MList.of_seq seq in
|
|
MList.to_klist l
|
|
|
|
(** {2 Functorial conversions between sets and sequences} *)
|
|
|
|
module Set = struct
|
|
module type S = sig
|
|
include Set.S
|
|
val of_seq : elt sequence -> t
|
|
val to_seq : t -> elt sequence
|
|
val to_list : t -> elt list
|
|
val of_list : elt list -> t
|
|
end
|
|
|
|
(** Create an enriched Set module from the given one *)
|
|
module Adapt(X : Set.S) = struct
|
|
let to_seq set k = X.iter k set
|
|
|
|
let of_seq seq = fold (fun set x -> X.add x set) X.empty seq
|
|
|
|
let of_list l = of_seq (of_list l)
|
|
|
|
let to_list set = to_list (to_seq set)
|
|
|
|
include X
|
|
end
|
|
|
|
(** Functor to build an extended Set module from an ordered type *)
|
|
module Make(X : Set.OrderedType) = struct
|
|
module MySet = Set.Make(X)
|
|
include Adapt(MySet)
|
|
end
|
|
end
|
|
|
|
(** {2 Conversion between maps and sequences.} *)
|
|
|
|
module Map = struct
|
|
module type S = sig
|
|
include Map.S
|
|
val to_seq : 'a t -> (key * 'a) sequence
|
|
val of_seq : (key * 'a) sequence -> 'a t
|
|
val keys : 'a t -> key sequence
|
|
val values : 'a t -> 'a sequence
|
|
val to_list : 'a t -> (key * 'a) list
|
|
val of_list : (key * 'a) list -> 'a t
|
|
end
|
|
|
|
(** Adapt a pre-existing Map module to make it sequence-aware *)
|
|
module Adapt(M : Map.S) = struct
|
|
let to_seq m = from_iter (fun k -> M.iter (fun x y -> k (x,y)) m)
|
|
|
|
let of_seq seq = fold (fun m (k,v) -> M.add k v m) M.empty seq
|
|
|
|
let keys m = from_iter (fun k -> M.iter (fun x _ -> k x) m)
|
|
|
|
let values m = from_iter (fun k -> M.iter (fun _ y -> k y) m)
|
|
|
|
let of_list l = of_seq (of_list l)
|
|
|
|
let to_list x = to_list (to_seq x)
|
|
|
|
include M
|
|
end
|
|
|
|
(** Create an enriched Map module, with sequence-aware functions *)
|
|
module Make(V : Map.OrderedType) : S with type key = V.t = struct
|
|
module M = Map.Make(V)
|
|
include Adapt(M)
|
|
end
|
|
end
|
|
|
|
(** {2 Infinite sequences of random values} *)
|
|
|
|
let random_int bound = forever (fun () -> Random.int bound)
|
|
|
|
let random_bool = forever Random.bool
|
|
|
|
let random_float bound = forever (fun () -> Random.float bound)
|
|
|
|
let random_array a k =
|
|
assert (Array.length a > 0);
|
|
while true do
|
|
let i = Random.int (Array.length a) in
|
|
k a.(i);
|
|
done
|
|
|
|
let random_list l = random_array (Array.of_list l)
|
|
|
|
(** {2 Infix functions} *)
|
|
|
|
module Infix = struct
|
|
let (--) i j = int_range ~start:i ~stop:j
|
|
|
|
let (--^) i j = int_range_dec ~start:i ~stop:j
|
|
|
|
let (>>=) x f = flat_map f x
|
|
|
|
let (>|=) x f = map f x
|
|
|
|
let (<*>) funs args k =
|
|
funs (fun f -> args (fun x -> k (f x)))
|
|
|
|
let (<+>) = append
|
|
end
|
|
|
|
include Infix
|
|
|
|
(** {2 Pretty printing of sequences} *)
|
|
|
|
(** Pretty print a sequence of ['a], using the given pretty printer
|
|
to print each elements. An optional separator string can be provided. *)
|
|
let pp_seq ?(sep=", ") pp_elt formatter seq =
|
|
let first = ref true in
|
|
seq
|
|
(fun x ->
|
|
(if !first then first := false
|
|
else begin
|
|
Format.pp_print_string formatter sep;
|
|
Format.pp_print_cut formatter ();
|
|
end);
|
|
pp_elt formatter x)
|
|
|
|
let pp_buf ?(sep=", ") pp_elt buf seq =
|
|
let first = ref true in
|
|
seq
|
|
(fun x ->
|
|
if !first then first := false else Buffer.add_string buf sep;
|
|
pp_elt buf x)
|
|
|
|
let to_string ?sep pp_elt seq =
|
|
let buf = Buffer.create 25 in
|
|
pp_buf ?sep (fun buf x -> Buffer.add_string buf (pp_elt x)) buf seq;
|
|
Buffer.contents buf
|
|
|
|
(** {2 Basic IO} *)
|
|
|
|
module IO = struct
|
|
let lines_of ?(mode=0o644) ?(flags=[Open_rdonly]) filename =
|
|
fun k ->
|
|
let ic = open_in_gen flags mode filename in
|
|
try
|
|
while true do
|
|
let line = input_line ic in
|
|
k line
|
|
done
|
|
with
|
|
| End_of_file -> close_in ic
|
|
| e -> close_in_noerr ic; raise e
|
|
|
|
let chunks_of ?(mode=0o644) ?(flags=[]) ?(size=1024) filename =
|
|
fun k ->
|
|
let ic = open_in_gen flags mode filename in
|
|
try
|
|
let buf = String.create size in
|
|
let n = ref 0 in
|
|
let stop = ref false in
|
|
while not !stop do
|
|
n := 0;
|
|
(* try to read [size] chars. If [input] returns [0] it means
|
|
the end of file, so we stop, but first we yield the current chunk *)
|
|
while !n < size && not !stop do
|
|
let n' = input ic buf !n (size - !n) in
|
|
if n' = 0 then stop := true else n := !n + n';
|
|
done;
|
|
if !n > 0
|
|
then k (String.sub buf 0 !n)
|
|
done;
|
|
close_in ic
|
|
with e ->
|
|
close_in_noerr ic;
|
|
raise e
|
|
|
|
let write_to ?(mode=0o644) ?(flags=[Open_creat;Open_wronly]) filename seq =
|
|
let oc = open_out_gen flags mode filename in
|
|
try
|
|
seq (fun s -> output oc s 0 (String.length s));
|
|
close_out oc
|
|
with e ->
|
|
close_out oc;
|
|
raise e
|
|
|
|
let write_lines ?mode ?flags filename seq =
|
|
write_to ?mode ?flags filename (snoc (intersperse "\n" seq) "\n")
|
|
end
|