ocaml-containers/misc/cache.ml
Simon Cruanes 4bc6c8a008 split into package core (no pack, 'CC' prefix, stable)
and misc where oneshot ideas go
2014-05-16 20:58:28 +02:00

380 lines
10 KiB
OCaml

(*
Copyright (c) 2013, Simon Cruanes
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with
the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*)
(** {1 Memoization caches} *)
module type EQ = sig
type t
val equal : t -> t -> bool
end
module type HASH = sig
include EQ
val hash : t -> int
end
(** Signature of a cache for values *)
module type S = sig
type 'a t
type key
val create : int -> 'a t
(** Create a new cache of the given size. *)
val clear : 'a t -> unit
(** Clear content of the cache *)
val with_cache : 'a t -> (key -> 'a) -> key -> 'a
(** Wrap the function with the cache. This means that
[with_cache cache f x] always returns the same value as
[f x], if [f x] returns, or raise the same exception.
However, [f] may not be called if [x] is in the cache. *)
val with_cache_rec : 'a t -> ((key -> 'a) -> key -> 'a) -> key -> 'a
(** Partially apply the given function with a cached version of itself.
It returns the specialized function.
[with_cache_rec cache f] applies [f] to a cached version of [f],
called [f'], so that [f' x = f f' x]. *)
end
(** Signature of a cache for pairs of values *)
module type S2 = sig
type 'a t
type key1
type key2
val create : int -> 'a t
(** Create a new cache of the given size. *)
val clear : 'a t -> unit
(** Clear content of the cache *)
val with_cache : 'a t -> (key1 -> key2 -> 'a) -> key1 -> key2 -> 'a
(** Wrap the function with the cache *)
end
(** {2 Dummy cache (no caching) *)
module Dummy(X : sig type t end) = struct
type 'a t = unit
and key = X.t
let create size = ()
let clear () = ()
let with_cache () f x = f x
let with_cache_rec () f x =
let rec f' x = f f' x in
f' x
end
module Dummy2(X : sig type t end)(Y : sig type t end) = struct
type 'a t = unit
and key1 = X.t
and key2 = Y.t
let create size = ()
let clear () = ()
let with_cache () f x1 x2 = f x1 x2
end
(** {2 Small linear cache} *)
(** This cache stores (key,value) pairs in an array, that is traversed
linearily. It is therefore only reasonable for small sizes (like 5). *)
module Linear(X : EQ) = struct
type 'a t = 'a bucket array
and 'a bucket = Empty | Pair of key * 'a | PairRaise of key * exn
and key = X.t
let create size =
assert (size >= 1);
Array.create size Empty
let clear cache =
Array.fill cache 0 (Array.length cache) Empty
(** Insert the bucket [b] into the cache *)
let insert cache b =
let n = Array.length cache in
(* shift other values toward the end *)
Array.blit cache 0 cache 1 (n-1);
cache.(0) <- b
(** Try to find [f x] in the cache, otherwise compute it
and cache the result *)
let with_cache cache f x =
let n = Array.length cache in
let rec search i =
(* function that performs the lookup *)
if i = n then begin
(* cache miss *)
try
let y = f x in
insert cache (Pair (x, y));
y
with e ->
insert cache (PairRaise (x, e));
raise e
end else match cache.(i) with
| Pair (x',y) when X.equal x x' -> y
| PairRaise (x', e) when X.equal x x' -> raise e
| _ -> search (i+1)
in
search 0
let with_cache_rec cache f x =
(* make a recursive version of [f] that uses the cache *)
let rec f' x = with_cache cache (fun x -> f f' x) x in
f' x
end
module Linear2(X : EQ)(Y : EQ) = struct
type 'a t = 'a bucket array
and 'a bucket = Empty | Assoc of key1 * key2 * 'a | AssocRaise of key1 * key2 * exn
and key1 = X.t
and key2 = Y.t
let create size =
assert (size >= 1);
Array.create size Empty
let clear cache =
Array.fill cache 0 (Array.length cache) Empty
(** Insert the binding [b] into the cache *)
let insert cache b =
let n = Array.length cache in
(* shift other values toward the end *)
Array.blit cache 0 cache 1 (n-1);
cache.(0) <- b
(** Try to find [f x] in the cache, otherwise compute it
and cache the result *)
let with_cache cache f x1 x2 =
let n = Array.length cache in
let rec search i =
(* function that performs the lookup *)
if i = n then begin
(* cache miss *)
try
let y = f x1 x2 in
insert cache (Assoc (x1, x2, y));
y
with e ->
insert cache (AssocRaise (x1, x2, e));
raise e
end else match cache.(i) with
| Assoc (x1',x2',y) when X.equal x1 x1' && Y.equal x2 x2' -> y
| AssocRaise (x1',x2',e) when X.equal x1 x1' && Y.equal x2 x2' -> raise e
| _ -> search (i+1)
in
search 0
end
(** {2 An imperative cache of fixed size for memoization of pairs} *)
module Replacing(X : HASH) = struct
type key = X.t
(** A slot of the array contains a (key, value, true)
if key->value is stored there (at index hash(key) % length),
(null, null, false) otherwise.
The first slot in the array contains the function
used to produce the value upon a cache miss. *)
type 'a t = 'a bucket array
and 'a bucket = Empty | Assoc of key * 'a | AssocRaise of key * exn
let create size =
Array.create size Empty
let clear c =
Array.fill c 0 (Array.length c) Empty
(** Try to find [f x] in the cache, otherwise compute it
and cache the result *)
let with_cache c f x =
let i = (X.hash x) mod (Array.length c) in
match c.(i) with
| Assoc (x', y) when X.equal x x' ->
y (* cache hit *)
| AssocRaise (x', e) when X.equal x x' ->
raise e (* cache hit *)
| _ -> (* cache miss *)
try
let y = f x in
c.(i) <- Assoc (x, y);
y
with e ->
c.(i) <- AssocRaise (x, e);
raise e
let with_cache_rec cache f x =
(* make a recursive version of [f] that uses the cache *)
let rec f' x = with_cache cache (fun x -> f f' x) x in
f' x
end
module Replacing2(X : HASH)(Y : HASH) = struct
(** A slot of the array contains a (key, value, true)
if key->value is stored there (at index hash(key) % length),
(null, null, false) otherwise.
The first slot in the array contains the function
used to produce the value upon a cache miss. *)
type 'a t = 'a bucket array
and 'a bucket = Empty | Assoc of key1 * key2 * 'a | AssocRaise of key1 * key2 * exn
and key1 = X.t
and key2 = Y.t
let create size =
Array.create size Empty
let clear c =
Array.fill c 0 (Array.length c) Empty
let with_cache c f x1 x2 =
let i = (((X.hash x1 + 17) lxor Y.hash x2) mod Array.length c) in
match c.(i) with
| Assoc (x1', x2', y) when X.equal x1 x1' && Y.equal x2 x2' ->
y (* cache hit *)
| AssocRaise (x1', x2', e) when X.equal x1 x1' && Y.equal x2 x2' ->
raise e (* cache hit *)
| _ -> (* cache miss *)
try
let y = f x1 x2 in
c.(i) <- Assoc (x1, x2, y);
y
with e ->
c.(i) <- AssocRaise (x1, x2, e);
raise e
end
(** {2 Hashtables with Least Recently Used eviction policy *)
(* TODO: handle exceptions *)
module LRU(X : HASH) = struct
type key = X.t
module H = Hashtbl.Make(X)
type 'a t = {
table : 'a node H.t; (* hashtable key -> node *)
first : 'a node; (* dummy node for the entry of the list *)
mutable len : int; (* number of entries *)
size : int; (* max size *)
}
and 'a node = {
mutable key : key;
mutable value : 'a;
mutable next : 'a node;
mutable prev : 'a node;
} (** Meta data for the value *)
let create size =
let rec first =
{ key = Obj.magic 0; value = Obj.magic 0; next=first; prev=first; }
in
{ table = H.create size;
len = 0;
size;
first;
}
(** Clear the content of the cache *)
let clear c =
c.len <- 0;
H.clear c.table;
c.first.next <- c.first;
c.first.prev <- c.first;
()
(** Find an element, or raise Not_found *)
let find c x =
let n = H.find c.table x in
assert (X.equal n.key x);
n.value
(** Replace least recently used element of [c] by x->y *)
let replace c x y =
let n = c.first.next in
(* remove old element *)
H.remove c.table n.key;
(* insertion in hashtable *)
H.add c.table x n;
(* re-use the node for x,y *)
n.key <- x;
n.value <- y;
(* remove from front of queue *)
n.next.prev <- c.first;
c.first.next <- n.next;
(* insert at back of queue *)
let last = c.first.prev in
last.next <- n;
c.first.prev <- n;
n.next <- c.first;
n.prev <- last;
()
(** Insert x->y in the cache, increasing its entry count *)
let insert c x y =
c.len <- c.len + 1;
let n = {
key = x;
value = y;
next = c.first;
prev = c.first.prev;
} in
(* insertion in hashtable *)
H.add c.table x n;
(* insertion at back of queue *)
c.first.prev.next <- n;
c.first.prev <- n;
()
(** Try to find [f x] in the cache, otherwise compute it
and cache the result *)
let with_cache c f x =
try
find c x
with Not_found ->
let y = f x in
(if c.len = c.size
then replace c x y
else insert c x y);
y
let with_cache_rec cache f x =
(* make a recursive version of [f] that uses the cache *)
let rec f' x = with_cache cache (fun x -> f f' x) x in
f' x
end