ocaml-containers/src/data/CCWBTree.ml
Simon Cruanes 5ff60d2a52
fix doc
2023-02-14 08:50:56 -05:00

519 lines
14 KiB
OCaml
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

(* This file is free software, part of containers. See file "license" for more details. *)
(** {1 Weight-Balanced Tree}
Most of this comes from "implementing sets efficiently in a functional language",
Stephen Adams.
The coefficients 5/2, 3/2 for balancing come from "balancing weight-balanced trees"
*)
type 'a iter = ('a -> unit) -> unit
type 'a gen = unit -> 'a option
type 'a printer = Format.formatter -> 'a -> unit
module type ORD = sig
type t
val compare : t -> t -> int
end
module type KEY = sig
include ORD
val weight : t -> int
end
(** {2 Signature} *)
module type S = sig
type key
type +'a t
val empty : 'a t
val is_empty : _ t -> bool
val singleton : key -> 'a -> 'a t
val mem : key -> _ t -> bool
val get : key -> 'a t -> 'a option
val get_exn : key -> 'a t -> 'a
(** @raise Not_found if the key is not present *)
val nth : int -> 'a t -> (key * 'a) option
(** [nth i m] returns the [i]-th [key, value] in the ascending
order. Complexity is [O(log (cardinal m))] *)
val nth_exn : int -> 'a t -> key * 'a
(** @raise Not_found if the index is invalid *)
val get_rank : key -> 'a t -> [ `At of int | `After of int | `First ]
(** [get_rank k m] looks for the rank of [k] in [m], i.e. the index
of [k] in the sorted list of bindings of [m].
[let (`At n) = get_rank k m in nth_exn n m = get m k] should hold.
@since 1.4 *)
val add : key -> 'a -> 'a t -> 'a t
val remove : key -> 'a t -> 'a t
val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
(** [update k f m] calls [f (Some v)] if [get k m = Some v], [f None]
otherwise. Then, if [f] returns [Some v'] it binds [k] to [v'],
if [f] returns [None] it removes [k] *)
val cardinal : _ t -> int
val weight : _ t -> int
val fold : f:('b -> key -> 'a -> 'b) -> x:'b -> 'a t -> 'b
val mapi : f:(key -> 'a -> 'b) -> 'a t -> 'b t
(** Map values, giving both key and value.
@since 0.17
*)
val map : f:('a -> 'b) -> 'a t -> 'b t
(** Map values, giving only the value.
@since 0.17
*)
val iter : f:(key -> 'a -> unit) -> 'a t -> unit
val split : key -> 'a t -> 'a t * 'a option * 'a t
(** [split k t] returns [l, o, r] where [l] is the part of the map
with keys smaller than [k], [r] has keys bigger than [k],
and [o = Some v] if [k, v] belonged to the map *)
val merge :
f:(key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
(** Like {!Map.S.merge} *)
val extract_min : 'a t -> key * 'a * 'a t
(** [extract_min m] returns [k, v, m'] where [k,v] is the pair with the
smallest key in [m], and [m'] does not contain [k].
@raise Not_found if the map is empty *)
val extract_max : 'a t -> key * 'a * 'a t
(** [extract_max m] returns [k, v, m'] where [k,v] is the pair with the
highest key in [m], and [m'] does not contain [k].
@raise Not_found if the map is empty *)
val choose : 'a t -> (key * 'a) option
val choose_exn : 'a t -> key * 'a
(** @raise Not_found if the tree is empty *)
val random_choose : Random.State.t -> 'a t -> key * 'a
(** Randomly choose a (key,value) pair within the tree, using weights
as probability weights
@raise Not_found if the tree is empty *)
val add_list : 'a t -> (key * 'a) list -> 'a t
val of_list : (key * 'a) list -> 'a t
val to_list : 'a t -> (key * 'a) list
val add_iter : 'a t -> (key * 'a) iter -> 'a t
val of_iter : (key * 'a) iter -> 'a t
val to_iter : 'a t -> (key * 'a) iter
val add_gen : 'a t -> (key * 'a) gen -> 'a t
val of_gen : (key * 'a) gen -> 'a t
val to_gen : 'a t -> (key * 'a) gen
val pp :
?pp_start:unit printer ->
?pp_stop:unit printer ->
?pp_arrow:unit printer ->
?pp_sep:unit printer ->
key printer ->
'a printer ->
'a t printer
(**/**)
val node_ : key -> 'a -> 'a t -> 'a t -> 'a t
val balanced : _ t -> bool
(**/**)
end
module MakeFull (K : KEY) : S with type key = K.t = struct
type key = K.t
type weight = int
type +'a t = E | N of key * 'a * 'a t * 'a t * weight
let empty = E
let is_empty = function
| E -> true
| N _ -> false
let rec get_exn k m =
match m with
| E -> raise Not_found
| N (k', v, l, r, _) ->
(match K.compare k k' with
| 0 -> v
| n when n < 0 -> get_exn k l
| _ -> get_exn k r)
let get k m = try Some (get_exn k m) with Not_found -> None
let mem k m =
try
ignore (get_exn k m);
true
with Not_found -> false
let singleton k v = N (k, v, E, E, K.weight k)
let weight = function
| E -> 0
| N (_, _, _, _, w) -> w
(* balancing parameters.
We take the parameters from "Balancing weight-balanced trees", as they
are rational and efficient. *)
(* delta=5/2
delta × (weight l + 1) ≥ weight r + 1
*)
let is_balanced l r = 5 * (weight l + 1) >= 2 * (weight r + 1)
(* gamma = 3/2
weight l + 1 < gamma × (weight r + 1) *)
let is_single l r = 2 * (weight l + 1) < 3 * (weight r + 1)
(* debug function *)
let rec balanced = function
| E -> true
| N (_, _, l, r, _) ->
is_balanced l r && is_balanced r l && balanced l && balanced r
(* smart constructor *)
let mk_node_ k v l r = N (k, v, l, r, weight l + weight r + K.weight k)
let single_l k1 v1 t1 t2 =
match t2 with
| E -> assert false
| N (k2, v2, t2, t3, _) -> mk_node_ k2 v2 (mk_node_ k1 v1 t1 t2) t3
let double_l k1 v1 t1 t2 =
match t2 with
| N (k2, v2, N (k3, v3, t2, t3, _), t4, _) ->
mk_node_ k3 v3 (mk_node_ k1 v1 t1 t2) (mk_node_ k2 v2 t3 t4)
| _ -> assert false
let rotate_l k v l r =
match r with
| E -> assert false
| N (_, _, rl, rr, _) ->
if is_single rl rr then
single_l k v l r
else
double_l k v l r
(* balance towards left *)
let balance_l k v l r =
if is_balanced l r then
mk_node_ k v l r
else
rotate_l k v l r
let single_r k1 v1 t1 t2 =
match t1 with
| E -> assert false
| N (k2, v2, t11, t12, _) -> mk_node_ k2 v2 t11 (mk_node_ k1 v1 t12 t2)
let double_r k1 v1 t1 t2 =
match t1 with
| N (k2, v2, t11, N (k3, v3, t121, t122, _), _) ->
mk_node_ k3 v3 (mk_node_ k2 v2 t11 t121) (mk_node_ k1 v1 t122 t2)
| _ -> assert false
let rotate_r k v l r =
match l with
| E -> assert false
| N (_, _, ll, lr, _) ->
if is_single lr ll then
single_r k v l r
else
double_r k v l r
(* balance toward right *)
let balance_r k v l r =
if is_balanced r l then
mk_node_ k v l r
else
rotate_r k v l r
let rec add k v m =
match m with
| E -> singleton k v
| N (k', v', l, r, _) ->
(match K.compare k k' with
| 0 -> mk_node_ k v l r
| n when n < 0 -> balance_r k' v' (add k v l) r
| _ -> balance_l k' v' l (add k v r))
(* extract min binding of the tree *)
let rec extract_min m =
match m with
| E -> raise Not_found
| N (k, v, E, r, _) -> k, v, r
| N (k, v, l, r, _) ->
let k', v', l' = extract_min l in
k', v', balance_l k v l' r
(* extract max binding of the tree *)
let rec extract_max m =
match m with
| E -> raise Not_found
| N (k, v, l, E, _) -> k, v, l
| N (k, v, l, r, _) ->
let k', v', r' = extract_max r in
k', v', balance_r k v l r'
let rec remove k m =
match m with
| E -> E
| N (k', v', l, r, _) ->
(match K.compare k k' with
| 0 ->
(match l, r with
| E, E -> E
| E, o | o, E -> o
| _, _ ->
if weight l > weight r then (
(* remove max element of [l] and put it at the root,
then rebalance towards the left if needed *)
let k', v', l' = extract_max l in
balance_l k' v' l' r
) else (
(* remove min element of [r] and rebalance *)
let k', v', r' = extract_min r in
balance_r k' v' l r'
))
| n when n < 0 -> balance_l k' v' (remove k l) r
| _ -> balance_r k' v' l (remove k r))
let update k f m =
let maybe_v = get k m in
match maybe_v, f maybe_v with
| None, None -> m
| Some _, None -> remove k m
| _, Some v -> add k v m
let rec nth_exn i m =
match m with
| E -> raise Not_found
| N (k, v, l, r, w) ->
let c = i - weight l in
(match c with
| 0 -> k, v
| n when n < 0 -> nth_exn i l (* search left *)
| _ ->
(* means c< K.weight k *)
if i < w - weight r then
k, v
else
nth_exn (i + weight r - w) r)
let nth i m = try Some (nth_exn i m) with Not_found -> None
let get_rank k m =
let rec aux i k m =
match m with
| E ->
if i = 0 then
`First
else
`After i
| N (k', _, l, r, _) ->
(match K.compare k k' with
| 0 -> `At (i + weight l)
| n when n < 0 -> aux i k l
| _ -> aux (1 + weight l + i) k r)
in
aux 0 k m
let rec fold ~f ~x:acc m =
match m with
| E -> acc
| N (k, v, l, r, _) ->
let acc = fold ~f ~x:acc l in
let acc = f acc k v in
fold ~f ~x:acc r
let rec mapi ~f = function
| E -> E
| N (k, v, l, r, w) -> N (k, f k v, mapi ~f l, mapi ~f r, w)
let rec map ~f = function
| E -> E
| N (k, v, l, r, w) -> N (k, f v, map ~f l, map ~f r, w)
let rec iter ~f m =
match m with
| E -> ()
| N (k, v, l, r, _) ->
iter ~f l;
f k v;
iter ~f r
let choose_exn = function
| E -> raise Not_found
| N (k, v, _, _, _) -> k, v
let choose = function
| E -> None
| N (k, v, _, _, _) -> Some (k, v)
(* pick an index within [0.. weight m-1] and get the element with
this index *)
let random_choose st m =
let w = weight m in
if w = 0 then raise Not_found;
nth_exn (Random.State.int st w) m
(* make a node (k,v,l,r) but balances on whichever side requires it *)
let node_shallow_ k v l r =
if is_balanced l r then
if is_balanced r l then
mk_node_ k v l r
else
balance_r k v l r
else
balance_l k v l r
(* assume keys of [l] are smaller than [k] and [k] smaller than keys of [r],
but do not assume anything about weights.
returns a tree with l, r, and (k,v) *)
let rec node_ k v l r =
match l, r with
| E, E -> singleton k v
| E, o | o, E -> add k v o
| N (kl, vl, ll, lr, _), N (kr, vr, rl, rr, _) ->
let left = is_balanced l r in
if left && is_balanced r l then
mk_node_ k v l r
else if not left then
node_shallow_ kr vr (node_ k v l rl) rr
else
node_shallow_ kl vl ll (node_ k v lr r)
(* join two trees, assuming all keys of [l] are smaller than keys of [r] *)
let join_ l r =
match l, r with
| E, E -> E
| E, o | o, E -> o
| N _, N _ ->
if weight l <= weight r then (
let k, v, r' = extract_min r in
node_ k v l r'
) else (
let k, v, l' = extract_max l in
node_ k v l' r
)
(* if [o_v = Some v], behave like [mk_node k v l r]
else behave like [join_ l r] *)
let mk_node_or_join_ k o_v l r =
match o_v with
| None -> join_ l r
| Some v -> node_ k v l r
let rec split k m =
match m with
| E -> E, None, E
| N (k', v', l, r, _) ->
(match K.compare k k' with
| 0 -> l, Some v', r
| n when n < 0 ->
let ll, o, lr = split k l in
ll, o, node_ k' v' lr r
| _ ->
let rl, o, rr = split k r in
node_ k' v' l rl, o, rr)
let rec merge ~f a b =
match a, b with
| E, E -> E
| E, N (k, v, l, r, _) ->
let v' = f k None (Some v) in
mk_node_or_join_ k v' (merge ~f E l) (merge ~f E r)
| N (k, v, l, r, _), E ->
let v' = f k (Some v) None in
mk_node_or_join_ k v' (merge ~f l E) (merge ~f r E)
| N (k1, v1, l1, r1, w1), N (k2, v2, l2, r2, w2) ->
if K.compare k1 k2 = 0 then
(* easy case *)
mk_node_or_join_ k1 (f k1 (Some v1) (Some v2)) (merge ~f l1 l2)
(merge ~f r1 r2)
else if w1 <= w2 then (
(* split left tree *)
let l1', v1', r1' = split k2 a in
mk_node_or_join_ k2 (f k2 v1' (Some v2)) (merge ~f l1' l2)
(merge ~f r1' r2)
) else (
(* split right tree *)
let l2', v2', r2' = split k1 b in
mk_node_or_join_ k1 (f k1 (Some v1) v2') (merge ~f l1 l2')
(merge ~f r1 r2')
)
let cardinal m = fold ~f:(fun acc _ _ -> acc + 1) ~x:0 m
let add_list m l = List.fold_left (fun acc (k, v) -> add k v acc) m l
let of_list l = add_list empty l
let to_list m = fold ~f:(fun acc k v -> (k, v) :: acc) ~x:[] m
let add_iter m seq =
let m = ref m in
seq (fun (k, v) -> m := add k v !m);
!m
let of_iter s = add_iter empty s
let to_iter m yield = iter ~f:(fun k v -> yield (k, v)) m
let rec add_gen m g =
match g () with
| None -> m
| Some (k, v) -> add_gen (add k v m) g
let of_gen g = add_gen empty g
let to_gen m =
let st = Stack.create () in
Stack.push m st;
let rec next () =
if Stack.is_empty st then
None
else (
match Stack.pop st with
| E -> next ()
| N (k, v, l, r, _) ->
Stack.push r st;
Stack.push l st;
Some (k, v)
)
in
next
let pp ?(pp_start = fun _ () -> ()) ?(pp_stop = fun _ () -> ())
?(pp_arrow = fun fmt () -> Format.fprintf fmt "@ -> ")
?(pp_sep = fun fmt () -> Format.fprintf fmt ",@ ") pp_k pp_v fmt m =
pp_start fmt ();
let first = ref true in
iter m ~f:(fun k v ->
if !first then
first := false
else
pp_sep fmt ();
pp_k fmt k;
pp_arrow fmt ();
pp_v fmt v;
Format.pp_print_cut fmt ());
pp_stop fmt ()
end
module Make (X : ORD) = MakeFull (struct
include X
let weight _ = 1
end)