ocaml-containers/misc/ratTerm.ml
Simon Cruanes 4bc6c8a008 split into package core (no pack, 'CC' prefix, stable)
and misc where oneshot ideas go
2014-05-16 20:58:28 +02:00

340 lines
10 KiB
OCaml

(*
copyright (c) 2013, simon cruanes
all rights reserved.
redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer. redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with
the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*)
(** {1 Rational Terms} *)
module type SYMBOL = sig
type t
val compare : t -> t -> int
val to_string : t -> string
end
module type S = sig
module Symbol : SYMBOL
type t = private
| Var of int
| Ref of int
| App of Symbol.t * t list
type term = t
type 'a env = 'a RAL.t
(** Structural equality and comparisons. Two terms being different
for {!eq} may still be equal, but with distinct representations.
For instance [r:f(f(r))] and [r:f(r)] are the same term but they
are not equal structurally. *)
val eq : t -> t -> bool
val cmp : t -> t -> int
val eq_set : t -> t -> bool
(** Proper equality on terms. This returns [true] if the two terms represent
the same infinite tree, not only if they have the same shape. *)
val var : unit -> t
(** free variable, with a fresh name *)
val mk_ref : int -> t
(** Back-ref of [n] levels down (see De Bruijn indices) *)
val app : Symbol.t -> t list -> t
(** Application of a symbol to a list, possibly with a unique label *)
val const : Symbol.t -> t
(** Shortcut for [app s []] *)
val pp : Buffer.t -> t -> unit
val fmt : Format.formatter -> t -> unit
val to_string : t -> string
val rename : t -> t
(** Rename all variables and references to fresh ones *)
module Subst : sig
type t
val empty : t
val bind : t -> int -> term -> t
val deref : t -> term -> term
val apply : ?depth:int -> t -> term -> term
val pp : Buffer.t -> t -> unit
val fmt : Format.formatter -> t -> unit
val to_string : t -> string
end
val matching : ?subst:Subst.t -> term -> term -> Subst.t option
val unify : ?subst:Subst.t -> term -> term -> Subst.t option
end
module Make(Symbol : SYMBOL) = struct
module Symbol = Symbol
type t =
| Var of int
| Ref of int
| App of Symbol.t * t list
type term = t
module IMap = Map.Make(struct
type t = int
let compare i j = i-j
end)
module IHTbl = Hashtbl.Make(struct
type t = int
let equal i j = i=j
let hash i = i land max_int
end)
type 'a env = 'a RAL.t
(** Environment for De Bruijn variables: a random-access list. *)
let _to_int = function
| Var _ -> 1
| Ref _ -> 2
| App _ -> 3
let rec cmp t1 t2 = match t1, t2 with
| Var i1, Var i2 -> i1 - i2
| Ref i1, Ref i2 -> i1 - i2
| App (f1, l1), App (f2, l2) ->
let c = Symbol.compare f1 f2 in
if c <> 0 then c
else cmp_list l1 l2
| _ -> _to_int t1 - _to_int t2
and cmp_list l1 l2 = match l1, l2 with
| [], [] -> 0
| [], _ -> -1
| _, [] -> 1
| t1::l1', t2::l2' ->
let c = cmp t1 t2 in
if c <> 0 then c else cmp_list l1' l2'
let eq t1 t2 = cmp t1 t2 = 0
module Set2T = Set.Make(struct
type t = term*term
let compare (l1,r1)(l2,r2) =
let c = cmp l1 l2 in
if c <> 0 then c else cmp r1 r2
end)
let eq_set t1 t2 =
let cycle = ref Set2T.empty in
let rec eq env t1 t2 = match t1, t2 with
| Ref i, _ -> eq env (RAL.get env i) t2
| _, Ref j -> eq env t1 (RAL.get env j)
| Var i, Var j -> i=j
| _ when Set2T.mem (t1,t2) !cycle -> true
| App(f1,l1), App(f2,l2) when Symbol.compare f1 f2 = 0 ->
(* if the subterms are equal, and we try to solve again t1=t2,
then we shouldn't cycle. Hence we protect ourself. *)
cycle := Set2T.add (t1, t2) !cycle;
let env = RAL.cons t1 env in
begin try
List.for_all2 (eq env) l1 l2
with Invalid_argument _ -> false
end
| _ -> false
in
eq RAL.empty t1 t2
let _count = ref 0
let var () =
let v = Var !_count in
incr _count;
v
let mk_ref i = Ref i
let app s l = App (s, l)
let const s = App (s, [])
let rec pp buf t = match t with
| Var i -> Printf.bprintf buf "X%d" i
| Ref i -> Printf.bprintf buf "*%d" i
| App (s, []) ->
Buffer.add_string buf (Symbol.to_string s)
| App (s, l) ->
Printf.bprintf buf "%s(%a)" (Symbol.to_string s) pp_list l
and pp_list buf l = match l with
| [] -> ()
| [x] -> pp buf x
| x::((_::_) as l') ->
pp buf x; Buffer.add_string buf ", "; pp_list buf l'
let to_string t =
let b = Buffer.create 16 in
pp b t;
Buffer.contents b
let fmt fmt t = Format.pp_print_string fmt (to_string t)
let rename t =
let names = IHTbl.create 16 in
let rec rename t = match t with
| Var i ->
begin try IHTbl.find names i
with Not_found ->
(* rename variable into a fresh one *)
let v = var() in
IHTbl.add names i v;
v
end
| Ref _ -> t (* no need to rename *)
| App (s, l) ->
app s (List.map rename l)
in rename t
module Subst = struct
type t = term IMap.t
let empty = IMap.empty
let bind s i t =
match t with
| _ when IMap.mem i s -> failwith "Subst.bind"
| Var j when i=j -> s (* id *)
| _ -> IMap.add i t s
let rec deref s t = match t with
| Var i ->
begin try deref s (IMap.find i s)
with Not_found -> t
end
| Ref _
| App _ -> t
(* does the variable [v] occur in [subst(t)]? *)
let rec _occur subst ~var t =
match deref subst t with
| Var _ -> eq var t
| Ref _
| App (_, []) -> false
| App (_, l) -> List.exists (_occur subst ~var) l
let apply ?(depth=0) subst t =
(* [depth]: current depth w.r.t root, [back]: map from var to
the depth of the term they are bound to *)
let rec apply depth back subst t = match t with
| Ref _ -> t
| Var i ->
let t' = deref subst t in
(* interesting case. Either [t] is bound to a term [t']
that contains it, which makes a cyclic term, or it's
not in which case it's easy. *)
begin match t' with
| Ref _ -> t
| App (s, l) ->
if _occur subst ~var:t t'
then
(* in any case we are possibly going to modify [r']
by replacing [x] by a backref. *)
let back = IMap.add i depth back in
let subst = IMap.remove i subst in
app s (List.map (apply (depth+1) back subst) l)
else
(* simply keep t'->s(l) *)
app s (List.map (apply (depth+1) back subst) l)
| Var j ->
assert (not (IMap.mem j subst));
begin try
let k = IMap.find j back in
(* the variable is actually bound to a superterm,
which is at depth [k]. The depth difference is
therefore [depth-k]. *)
Ref (depth-k)
with Not_found ->
t' (* truly unbound variable. *)
end
end
| App (s, l) ->
app s (List.map (apply (depth+1) back subst) l)
in apply depth IMap.empty subst t
let pp buf subst =
Buffer.add_string buf "{";
let first = ref true in
IMap.iter
(fun i t ->
if !first then first:= false else Buffer.add_string buf ", ";
Printf.bprintf buf "X%d → %a" i pp t)
subst;
Buffer.add_string buf "}";
()
let to_string t =
let b = Buffer.create 16 in
pp b t;
Buffer.contents b
let fmt fmt t = Format.pp_print_string fmt (to_string t)
end
exception Fail
let matching ?(subst=Subst.empty) t1 t2 =
assert false (* TODO (need to gather variables of [t2]... *)
let unify ?(subst=Subst.empty) t1 t2 =
(* pairs of terms already unified *)
let cycle = ref Set2T.empty in
(* [env] contains references to superterms *)
let rec unif env subst t1 t2 =
match Subst.deref subst t1, Subst.deref subst t2 with
| Ref i1, _ -> unif env subst (RAL.get env i1) t2
| _, Ref i2 -> unif env subst t1 (RAL.get env i2)
| Var i, Var j when i=j -> subst
| Var i, _ -> Subst.bind subst i t2
| _, Var j -> Subst.bind subst j t1
| t1, t2 when Set2T.mem (t1,t2) !cycle ->
subst (* t1,t2 already being unified, avoid cycling forever *)
| App (f1, l1) as t1, (App (f2, l2) as t2) ->
if Symbol.compare f1 f2 <> 0 then raise Fail;
(* remember we are unifying those terms *)
cycle := Set2T.add (t1, t2) !cycle;
(* now we can assume [t1 = t2] if unification succeeds, so
we just push [t1] into the env *)
let env = RAL.cons t1 env in
try
List.fold_left2 (unif env) subst l1 l2
with Invalid_argument _ -> raise Fail
in
try Some (unif RAL.empty subst t1 t2)
with Fail -> None
end
module Str = struct
type t = string
let compare = String.compare
let to_string s = s
end
module Default = Make(Str)