ocaml-containers/src/data/CCHashTrie.ml

508 lines
13 KiB
OCaml

(* This file is free software, part of containers. See file "license" for more details. *)
(** {1 Hash Tries} *)
type 'a sequence = ('a -> unit) -> unit
type 'a printer = Format.formatter -> 'a -> unit
type 'a ktree = unit -> [`Nil | `Node of 'a * 'a ktree list]
(** {2 Fixed-Size Arrays} *)
module type FIXED_ARRAY = sig
type 'a t
val create : empty:'a -> 'a t
val length_log : int
val length : int (* 2 power length_log *)
val get : 'a t -> int -> 'a
val set : 'a t -> int -> 'a -> 'a t
val update : 'a t -> int -> ('a -> 'a) -> 'a t
val remove : empty:'a -> 'a t -> int -> 'a t (* put back [empty] there *)
val iter : ('a -> unit) -> 'a t -> unit
val fold : ('b -> 'a -> 'b) -> 'b -> 'a t -> 'b
end
(* TODO: add update again, to call popcount only once *)
module type S = sig
module A : FIXED_ARRAY
type key
type 'a t
val empty : 'a t
val is_empty : _ t -> bool
val singleton : key -> 'a -> 'a t
val add : key -> 'a -> 'a t -> 'a t
val mem : key -> _ t -> bool
val get : key -> 'a t -> 'a option
val get_exn : key -> 'a t -> 'a
(** @raise Not_found if key not present *)
val remove : key -> 'a t -> 'a t
val cardinal : _ t -> int
val iter : (key -> 'a -> unit) -> 'a t -> unit
val fold : ('b -> key -> 'a -> 'b) -> 'b -> 'a t -> 'b
(** {6 Conversions} *)
val to_list : 'a t -> (key * 'a) list
val add_list : 'a t -> (key * 'a) list -> 'a t
val of_list : (key * 'a) list -> 'a t
val add_seq : 'a t -> (key * 'a) sequence -> 'a t
val of_seq : (key * 'a) sequence -> 'a t
val to_seq : 'a t -> (key * 'a) sequence
(** {6 IO} *)
val print : key printer -> 'a printer -> 'a t printer
val as_tree : 'a t -> [`L of int * (key * 'a) list | `N ] ktree
(** For debugging purpose: explore the structure of the tree,
with [`L (h,l)] being a leaf (with shared hash [h])
and [`N] an inner node *)
end
module type KEY = sig
type t
val equal : t -> t -> bool
val hash : t -> int
end
(** {2 Arrays} *)
(* regular array of 32 elements *)
module A32 : FIXED_ARRAY = struct
type 'a t = 'a array
let length_log = 5
let length = 1 lsl length_log (* 32 *)
let create ~empty:x = Array.make length x
let get a i = Array.get a i
let set a i x =
let a' = Array.copy a in
a'.(i) <- x;
a'
let update a i f = set a i (f (get a i))
let remove ~empty a i =
let a' = Array.copy a in
a'.(i) <- empty;
a'
let iter = Array.iter
let fold = Array.fold_left
end
(*
from https://en.wikipedia.org/wiki/Hamming_weight
//This uses fewer arithmetic operations than any other known
//implementation on machines with slow multiplication.
//It uses 17 arithmetic operations.
int popcount_2(uint64_t x) {
x -= (x >> 1) & m1; //put count of each 2 bits into those 2 bits
x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits
x = (x + (x >> 4)) & m4; //put count of each 8 bits into those 8 bits
x += x >> 8; //put count of each 16 bits into their lowest 8 bits
x += x >> 16; //put count of each 32 bits into their lowest 8 bits
x += x >> 32; //put count of each 64 bits into their lowest 8 bits
return x & 0x7f;
}
32-bits popcount. int64 is too slow, and there is not use trying to deal
with 32 bit platforms by defining popcount-16, as there are integer literals
here that will not compile on 32-bits.
*)
let popcount b =
let b = b - ((b lsr 1) land 0x55555555) in
let b = (b land 0x33333333) + ((b lsr 2) land 0x33333333) in
let b = (b + (b lsr 4)) land 0x0f0f0f0f in
let b = b + (b lsr 8) in
let b = b + (b lsr 16) in
b land 0x3f
(*$T
popcount 5 = 2
popcount 256 = 1
popcount 255 = 8
popcount 0xFFFF = 16
popcount 0xFF1F = 13
popcount 0xFFFFFFFF = 32
*)
(*$Q
Q.int (fun i -> let i = i land (1 lsl 32) in popcount i <= 32)
*)
(* sparse array, using a bitfield and POPCOUNT *)
module A_SPARSE : FIXED_ARRAY = struct
type 'a t = {
bits: int;
arr: 'a array;
empty: 'a;
}
let length_log = 5
let length = 1 lsl length_log
let create ~empty = { bits=0; arr= [| |]; empty; }
let get a i =
let idx = 1 lsl i in
if a.bits land idx = 0
then a.empty
else
let real_idx = popcount (a.bits land (idx- 1)) in
a.arr.(real_idx)
let set a i x =
let idx = 1 lsl i in
let real_idx = popcount (a.bits land (idx -1)) in
if a.bits land idx = 0
then (
(* insert at [real_idx] in a new array *)
let bits = a.bits lor idx in
let n = Array.length a.arr in
let arr = Array.make (n+1) a.empty in
arr.(real_idx) <- x;
if real_idx>0
then Array.blit a.arr 0 arr 0 real_idx;
if real_idx<n
then Array.blit a.arr real_idx arr (real_idx+1) (n-real_idx);
{a with bits; arr}
) else (
(* replace element at [real_idx] *)
let arr = Array.copy a.arr in
arr.(real_idx) <- x;
{a with arr}
)
let update a i f =
let idx = 1 lsl i in
let real_idx = popcount (a.bits land (idx -1)) in
if a.bits land idx = 0
then (
(* not present *)
let x = f a.empty in
(* insert at [real_idx] in a new array *)
let bits = a.bits lor idx in
let n = Array.length a.arr in
let arr = Array.make (n+1) a.empty in
arr.(real_idx) <- x;
if real_idx>0
then Array.blit a.arr 0 arr 0 real_idx;
if real_idx<n
then Array.blit a.arr real_idx arr (real_idx+1) (n-real_idx);
{a with bits; arr}
) else (
let x = f a.arr.(real_idx) in
(* replace element at [real_idx] *)
let arr = Array.copy a.arr in
arr.(real_idx) <- x;
{a with arr}
)
let remove ~empty:_ a i =
let idx = 1 lsl i in
let real_idx = popcount (a.bits land (idx -1)) in
if a.bits land idx = 0
then a (* not present *)
else (
(* remove at [real_idx] *)
let bits = a.bits land (lnot idx) in
let n = Array.length a.arr in
let arr = Array.make (n-1) a.empty in
if real_idx > 0
then Array.blit a.arr 0 arr 0 real_idx;
if real_idx+1 < n
then Array.blit a.arr (real_idx+1) arr real_idx (n-real_idx-1);
{a with bits; arr}
)
let iter f a = Array.iter f a.arr
let fold f acc a = Array.fold_left f acc a.arr
end
(** {2 Functors} *)
module Make(Key : KEY)
: S with type key = Key.t
= struct
module A = A_SPARSE
let () = assert (A.length = 1 lsl A.length_log)
module Hash : sig
type t = private int
val make : Key.t -> t
val zero : t (* special "hash" *)
val is_0 : t -> bool
val rem : t -> int (* [A.length_log] last bits *)
val quotient : t -> t (* remove [A.length_log] last bits *)
end = struct
type t = int
let make = Key.hash
let zero = 0
let is_0 h = h==0
let rem h = h land (A.length - 1)
let quotient h = h lsr A.length_log
end
let hash_ = Hash.make
type key = Key.t
(* association list, without duplicates *)
type 'a leaf =
| Nil
| Cons of key * 'a * 'a leaf
type 'a t =
| E
| S of Hash.t * key * 'a (* single pair *)
| L of Hash.t * 'a leaf (* same hash for all elements *)
| N of 'a leaf * 'a t A.t (* leaf for hash=0, subnodes *)
(* invariants:
L [] --> E
N [E, E,...., E] -> E
*)
let empty = E
let is_empty = function
| E -> true
| L (_, Nil) -> assert false
| S _
| L _
| N _ -> false
let leaf_ k v ~h = L (h, Cons(k,v,Nil))
let singleton k v = leaf_ k v ~h:(hash_ k)
let rec get_exn_list_ k l = match l with
| Nil -> raise Not_found
| Cons (k', v', tail) ->
if Key.equal k k' then v' else get_exn_list_ k tail
let rec get_exn_ k ~h m = match m with
| E -> raise Not_found
| S (_, k', v') -> if Key.equal k k' then v' else raise Not_found
| L (_, l) -> get_exn_list_ k l
| N (leaf, a) ->
if Hash.is_0 h then get_exn_list_ k leaf
else
let i = Hash.rem h in
let h' = Hash.quotient h in
get_exn_ k ~h:h' (A.get a i)
let get_exn k m = get_exn_ k ~h:(hash_ k) m
let get k m =
try Some (get_exn_ k ~h:(hash_ k) m)
with Not_found -> None
let mem k m =
try ignore (get_exn_ k ~h:(hash_ k) m); true
with Not_found -> false
(* TODO: use Hash.combine if array only has one non-empty LEAF element? *)
(* [left] list nodes already visited *)
let rec add_list_ k v l = match l with
| Nil -> Cons (k, v, Nil)
| Cons (k', v', tail) ->
if Key.equal k k'
then Cons (k, v, tail) (* replace *)
else Cons (k', v', add_list_ k v tail)
(* [h]: hash, with the part required to reach this leaf removed *)
let rec add_ k v ~h m = match m with
| E -> S (h, k, v)
| S (h', k', v') ->
if h=h'
then if Key.equal k k'
then S (h, k, v) (* replace *)
else L (h, Cons (k, v, Cons (k', v', Nil)))
else
make_array_ ~leaf:(Cons (k', v', Nil)) ~h_leaf:h' k v ~h
| L (h', l) ->
if h=h'
then L (h, add_list_ k v l)
else (* split into N *)
make_array_ ~leaf:l ~h_leaf:h' k v ~h
| N (leaf, a) ->
if Hash.is_0 h
then N (add_list_ k v leaf, a)
else N (leaf, add_to_array_ k v ~h a)
(* make an array containing a leaf, and insert (k,v) in it *)
and make_array_ ~leaf ~h_leaf:h' k v ~h =
let a = A.create ~empty:E in
let a, leaf =
if Hash.is_0 h' then a, leaf
else
(* put leaf in the right bucket *)
let i = Hash.rem h' in
let h'' = Hash.quotient h' in
A.set a i (L (h'', leaf)), Nil
in
(* then add new node *)
let a, leaf =
if Hash.is_0 h then a, add_list_ k v leaf
else add_to_array_ k v ~h a, leaf
in
N (leaf, a)
(* add k->v to [a] *)
and add_to_array_ k v ~h a =
(* insert in a bucket *)
let i = Hash.rem h in
let h' = Hash.quotient h in
A.update a i (fun x -> add_ k v ~h:h' x)
let add k v m = add_ k v ~h:(hash_ k) m
exception LocalExit
let is_empty_arr_ a =
try
A.iter (fun t -> if not (is_empty t) then raise LocalExit) a;
true
with LocalExit -> false
let is_empty_list_ = function
| Nil -> true
| Cons _ -> false
let rec remove_list_ k l = match l with
| Nil -> Nil
| Cons (k', v', tail) ->
if Key.equal k k'
then tail
else Cons (k', v', remove_list_ k tail)
let rec remove_rec_ k ~h m = match m with
| E -> E
| S (_, k', _) ->
if Key.equal k k' then E else m
| L (h, l) ->
let l = remove_list_ k l in
if is_empty_list_ l then E else L (h, l)
| N (leaf, a) ->
let leaf, a =
if Hash.is_0 h
then remove_list_ k leaf, a
else
let i = Hash.rem h in
let h' = Hash.quotient h in
let new_t = remove_rec_ k ~h:h' (A.get a i) in
if is_empty new_t
then leaf, A.remove ~empty:E a i (* remove sub-tree *)
else leaf, A.set a i new_t
in
if is_empty_list_ leaf && is_empty_arr_ a
then E
else N (leaf, a)
let remove k m = remove_rec_ k ~h:(hash_ k) m
let iter f t =
let rec aux = function
| E -> ()
| S (_, k, v) -> f k v
| L (_,l) -> aux_list l
| N (l,a) -> aux_list l; A.iter aux a
and aux_list = function
| Nil -> ()
| Cons (k, v, tl) -> f k v; aux_list tl
in
aux t
let fold f acc t =
let rec aux acc t = match t with
| E -> acc
| S (_,k,v) -> f acc k v
| L (_,l) -> aux_list acc l
| N (l,a) -> let acc = aux_list acc l in A.fold aux acc a
and aux_list acc l = match l with
| Nil -> acc
| Cons (k, v, tl) -> let acc = f acc k v in aux_list acc tl
in
aux acc t
let cardinal m = fold (fun n _ _ -> n+1) 0 m
let to_list m = fold (fun acc k v -> (k,v)::acc) [] m
let add_list m l = List.fold_left (fun acc (k,v) -> add k v acc) m l
let of_list l = add_list empty l
let add_seq m s =
let m = ref m in
s (fun (k,v) -> m := add k v !m);
!m
let of_seq s = add_seq empty s
let to_seq m yield = iter (fun k v -> yield (k,v)) m
let print ppk ppv out m =
let first = ref true in
iter
(fun k v ->
if !first then first := false else Format.fprintf out ";@ ";
ppk out k;
Format.pp_print_string out " -> ";
ppv out v
) m
let rec as_tree m () = match m with
| E -> `Nil
| S (h,k,v) -> `Node (`L ((h:>int), [k,v]), [])
| L (h,l) -> `Node (`L ((h:>int), list_as_tree_ l), [])
| N (l,a) -> `Node (`N, as_tree (L (Hash.zero, l)) :: array_as_tree_ a)
and list_as_tree_ l = match l with
| Nil -> []
| Cons (k, v, tail) -> (k,v) :: list_as_tree_ tail
and array_as_tree_ a = A.fold (fun acc t -> as_tree t :: acc) [] a
end
(*$R
let module M = Make(CCInt) in
let m = M.of_list CCList.( (501 -- 1000) @ (500 -- 1) |> map (fun i->i,i)) in
assert_equal ~printer:CCInt.to_string 1000 (M.cardinal m);
assert_bool "check all get"
(Sequence.for_all (fun i -> i = M.get_exn i m) Sequence.(1 -- 1000));
let m = Sequence.(501 -- 1000 |> fold (fun m i -> M.remove i m) m) in
assert_equal ~printer:CCInt.to_string 500 (M.cardinal m);
assert_bool "check all get after remove"
(Sequence.for_all (fun i -> i = M.get_exn i m) Sequence.(1 -- 500));
assert_bool "check all get after remove"
(Sequence.for_all (fun i -> None = M.get i m) Sequence.(501 -- 1000));
*)