ocaml-containers/benchs/run_benchs.ml
2020-04-24 21:11:44 -04:00

1503 lines
44 KiB
OCaml

(** Generic benchs *)
[@@@warning "-5"]
module B = Benchmark
let (@>) = B.Tree.(@>)
let (@>>) = B.Tree.(@>>)
let (@>>>) = B.Tree.(@>>>)
let (|>) = CCFun.(|>)
module Int_map = Map.Make(CCInt)
let app_int f n = string_of_int n @> lazy (f n)
let app_ints f l = B.Tree.concat (List.map (app_int f) l)
(* for benchmark *)
let repeat = 3
(* composition *)
let (%%) f g x = f (g x)
let opaque_ignore x = ignore (Sys.opaque_identity x)
module L = struct
let bench_iter ?(time=2) n =
let f i = opaque_ignore i in
let l = CCList.(1 -- n) in
let ral = CCRAL.of_list l in
let vec = CCFun_vec.of_list l in
let sek = Sek.Persistent.of_array 0 (Array.of_list l) in
let iter_list () = List.iter f l
and raliter () = CCRAL.iter ~f ral
and funvec_iter () = CCFun_vec.iter ~f vec
and sek_iter () = Sek.Persistent.iter Sek.forward f sek
in
B.throughputN time ~repeat
[ "List.iter", iter_list, ()
; "CCRAL.iter", raliter, ()
; "CCFun_vec.iter", funvec_iter, ()
; "Sek.Persistent.iter", sek_iter, ()
]
(* MAP *)
let f_ x = x+1
let rec map_naive f l = match l with
| [] -> []
| x :: tail ->
let y = f x in
y :: map_naive f tail
let bench_map ?(time=2) n =
let l = CCList.(1 -- n) in
let ral = CCRAL.of_list l in
let map_naive () = ignore (try List.map f_ l with Stack_overflow -> [])
and map_naive2 () = ignore (try map_naive f_ l with Stack_overflow -> [])
and map_tailrec () = ignore (List.rev (List.rev_map f_ l))
and ccmap () = ignore (CCList.map f_ l)
and ralmap () = ignore (CCRAL.map ~f:f_ ral)
in
B.throughputN time ~repeat
[ "List.map", map_naive, ()
; "List.map(inline)", map_naive2, ()
; "List.rev_map o rev", map_tailrec, ()
; "CCList.map", ccmap, ()
; "CCRAL.map", ralmap, ()
]
(* FLAT MAP *)
let f_ x =
if x mod 10 = 0 then []
else if x mod 5 = 1 then [x;x+1]
else [x;x+1;x+2;x+3]
let f_ral_ x =
if x mod 10 = 0 then CCRAL.empty
else if x mod 5 = 1 then CCRAL.of_list [x;x+1]
else CCRAL.of_list [x;x+1;x+2;x+3]
let bench_flat_map ?(time=2) n =
let l = CCList.(1 -- n) in
let ral = CCRAL.of_list l in
let flatten_map_ l () = ignore @@ List.flatten (CCList.map f_ l)
and flatmap l () = ignore @@ CCList.flat_map f_ l
and flatten_ccmap_ l () = ignore @@ List.flatten (List.map f_ l)
and flatmap_ral_ l () = ignore @@ CCRAL.flat_map f_ral_ l
in
B.throughputN time ~repeat
[ "flat_map", flatmap l, ()
; "flatten o CCList.map", flatten_ccmap_ l, ()
; "flatten o map", flatten_map_ l, ()
; "ral_flatmap", flatmap_ral_ ral, ()
]
(* APPEND *)
let append_ f (l1, l2, l3) =
ignore (f (f l1 l2) l3)
let bench_append ?(time=2) n =
let l1 = CCList.(1 -- n) in
let l2 = CCList.(n+1 -- 2*n) in
let l3 = CCList.(2*n+1 -- 3*n) in
let v1 = CCFun_vec.of_list l1 in
let v2 = CCFun_vec.of_list l2 in
let v3 = CCFun_vec.of_list l3 in
let s1 = Sek.Persistent.of_array 0 (Array.of_list l1) in
let s2 = Sek.Persistent.of_array 0 (Array.of_list l2) in
let s3 = Sek.Persistent.of_array 0 (Array.of_list l3) in
let bench_list l1 l2 l3 () = opaque_ignore (List.(append (append l1 l2) l3)) in
let bench_cclist l1 l2 l3 () = opaque_ignore (CCList.(append (append l1 l2) l3)) in
let bench_funvec l1 l2 l3 () = opaque_ignore (CCFun_vec.(append (append l1 l2) l3)) in
let bench_sek l1 l2 l3 () = opaque_ignore (Sek.Persistent.(concat (concat l1 l2) l3)) in
B.throughputN time ~repeat
[ "CCList.append", bench_list l1 l2 l3, ()
; "List.append", bench_cclist l1 l2 l3, ()
; "CCFun_vec.append", bench_funvec v1 v2 v3, ()
; "Sek.concat", bench_sek s1 s2 s3, ()
]
(* FLATTEN *)
let bench_flatten ?(time=2) n =
let fold_right_append_ l =
List.fold_right List.append l []
and cc_fold_right_append_ l =
CCList.fold_right CCList.append l []
in
let l =
CCList.mapi
(fun i x -> CCList.(x -- (x+ min i 100)))
CCList.(1 -- n)
in
B.throughputN time ~repeat
[ "CCList.flatten", CCList.flatten, l
; "List.flatten", List.flatten, l
; "fold_right append", fold_right_append_, l
; "CCList.(fold_right append)", cc_fold_right_append_, l
]
(* RANDOM ACCESS *)
let bench_nth ?(time=2) n =
let l = CCList.(0 -- (n - 1)) in
let ral = CCRAL.of_list l in
let v = CCFun_vec.of_list l in
let bv = BatVect.of_list l in
let map = List.fold_left (fun map i -> Int_map.add i i map) Int_map.empty l in
let sek = Sek.Persistent.of_array 0 (Array.of_list l) in
let bench_list l () =
for i = 0 to n-1 do opaque_ignore (List.nth l i) done
and bench_map l () =
for i = 0 to n-1 do opaque_ignore (Int_map.find i l) done
and bench_ral l () =
for i = 0 to n-1 do opaque_ignore (CCRAL.get_exn l i) done
and bench_funvec l () =
for i = 0 to n-1 do opaque_ignore (CCFun_vec.get_exn i l) done
and bench_batvec l () =
for i = 0 to n-1 do opaque_ignore (BatVect.get l i) done
and bench_sek l () =
for i = 0 to n-1 do opaque_ignore (Sek.Persistent.get l i) done
in
B.throughputN time ~repeat
[ "List.nth", bench_list l, ()
; "Map.find", bench_map map, ()
; "RAL.get", bench_ral ral, ()
; "funvec.get", bench_funvec v, ()
; "batvec.get", bench_batvec bv, ()
; "Sek.Persistent.get", bench_sek sek, ()
]
let bench_set ?(time=2) n =
let l = CCList.(0 -- (n - 1)) in
let ral = CCRAL.of_list l in
(* let v = CCFun_vec.of_list l in *)
let bv = BatVect.of_list l in
let sek = Sek.Persistent.of_array 0 (Array.of_list l) in
let map = List.fold_left (fun map i -> Int_map.add i i map) Int_map.empty l in
let bench_map l () =
for i = 0 to n-1 do opaque_ignore (Int_map.add i (-i) l) done
and bench_ral l () =
for i = 0 to n-1 do opaque_ignore (CCRAL.set l i (-i)) done
(*
and bench_funvec l () =
for _i = 0 to n-1 do opaque_ignore ((* TODO *)) done
*)
and bench_batvec l () =
for i = 0 to n-1 do opaque_ignore (BatVect.set l i (-i)) done
and bench_sek l () =
for i = 0 to n-1 do opaque_ignore (Sek.Persistent.set l i (-i)) done
in
B.throughputN time ~repeat
[ "Map.add", bench_map map, ()
; "RAL.set", bench_ral ral, ()
(* ; "funvec.set", bench_funvec v, () *)
; "batvec.set", bench_batvec bv, ()
; "Sek.Persistent.set", bench_sek sek, ()
]
let bench_push ?(time=2) n =
(*let ral = ref CCRAL.empty in *)
let v = ref CCFun_vec.empty in
let bv = ref BatVect.empty in
let map = ref Int_map.empty in
let sek = ref (Sek.Persistent.create 0) in
let bench_map l () =
for i = 0 to n-1 do l := Int_map.add i i !l done; opaque_ignore l
(*
and bench_ral l () =
(* Note: Better implementation probably possible *)
for i = 0 to n-1 do l := CCRAL.append !l (CCRAL.return i) done; opaque_ignore l
*)
and bench_funvec l () =
for i = 0 to n-1 do l := CCFun_vec.push i !l done; opaque_ignore l
and bench_batvec l () =
for i = 0 to n-1 do l := BatVect.append i !l done; opaque_ignore l
and bench_sek l () =
for i = 0 to n-1 do l := Sek.Persistent.push Sek.front !l i done; opaque_ignore l
in
B.throughputN time ~repeat
[ "Map.add", bench_map map, ()
(* ; "RAL.append", bench_ral ral, () *) (* too slow *)
; "Sek.Persistent.push", bench_sek sek, ()
; "funvec.push", bench_funvec v, ()
; "batvec.append", bench_batvec bv, ()
]
let bench_pop ?(time=2) n =
let l = CCList.(0 -- (n - 1)) in
let ral = CCRAL.of_list l in
let v = CCFun_vec.of_list l in
let bv = BatVect.of_list l in
let map = List.fold_left (fun map i -> Int_map.add i i map) Int_map.empty l in
let sek = Sek.Persistent.of_array 0 (Array.of_list l) in
let bench_map l () =
let l = ref l in
for i = 0 to n-1 do l := Int_map.remove i !l done; opaque_ignore l
and bench_ral l () =
let l = ref l in
for _ = 0 to n-1 do l := CCRAL.tl !l done; opaque_ignore l
and bench_funvec l () =
let l = ref l in
for _ = 0 to n-1 do l := snd (CCFun_vec.pop_exn !l) done; opaque_ignore l
and bench_batvec l () =
let l = ref l in
for _ = 0 to n-1 do l := snd (BatVect.pop !l) done; opaque_ignore l
and bench_sek l () =
let l = ref l in
for _ = 0 to n-1 do l := snd (Sek.Persistent.pop Sek.back !l) done; opaque_ignore l
in
B.throughputN time ~repeat
[ "Map.remove", bench_map map, ()
; "RAL.tl", bench_ral ral, ()
; "funvec.pop", bench_funvec v, ()
; "batvec.pop", bench_batvec bv, ()
; "Sek.Persistent.pop", bench_sek sek, ()
]
(* MAIN *)
let () = B.Tree.register (
"list" @>>>
[ "iter" @>>
B.Tree.concat
[ app_int (bench_iter ~time:2) 100
; app_int (bench_iter ~time:2) 10_000
; app_int (bench_iter ~time:4) 100_000 ]
; "map" @>>
B.Tree.concat
[ app_int (bench_map ~time:2) 100
; app_int (bench_map ~time:2) 10_000
; app_int (bench_map ~time:4) 100_000
; app_int (bench_map ~time:4) 500_000 ]
; "flat_map" @>>
B.Tree.concat
[ app_int (bench_flat_map ~time:2) 100
; app_int (bench_flat_map ~time:2) 10_000
; app_int (bench_flat_map ~time:4) 100_000]
; "flatten" @>>
B.Tree.concat
[ app_int (bench_flatten ~time:2) 100
; app_int (bench_flatten ~time:2) 10_000
; app_int (bench_flatten ~time:4) 100_000]
; "append" @>>
B.Tree.concat
[ app_int (bench_append ~time:2) 100
; app_int (bench_append ~time:2) 10_000
; app_int (bench_append ~time:4) 100_000]
; "nth" @>>
B.Tree.concat
[ app_int (bench_nth ~time:2) 100
; app_int (bench_nth ~time:2) 10_000
; app_int (bench_nth ~time:4) 100_000]
; "set" @>>
B.Tree.concat
[ app_int (bench_set ~time:2) 100
; app_int (bench_set ~time:2) 10_000
; app_int (bench_set ~time:4) 100_000]
; "push" @>>
B.Tree.concat
[ app_int (bench_push ~time:2) 100
; app_int (bench_push ~time:2) 10_000
; app_int (bench_push ~time:4) 100_000]
; "pop" @>>
B.Tree.concat
[ app_int (bench_pop ~time:2) 100
; app_int (bench_pop ~time:2) 10_000
; app_int (bench_pop ~time:4) 100_000]
]
)
end
module Arr = struct
let rand = Random.State.make [| 1;2;3;4 |]
let mk_arr n =
Array.init n (fun _ -> Random.State.int rand 5_000)
module IntArr = struct
type elt=int
type t = int array
let get = Array.get
let set = Array.set
let length = Array.length
end
let sort_ccarray a =
CCArray.sort_generic (module IntArr) ~cmp:CCInt.compare a
module Quicksort_ref = struct
module A = Array
module Rand = Random.State
let seed_ = [|123456|]
type state = {
mutable l: int; (* left pointer *)
mutable g: int; (* right pointer *)
mutable k: int;
}
let rand_idx_ rand i j = i + Rand.int rand (j-i)
let swap_ a i j =
if i=j then ()
else (
let tmp = A.get a i in
A.set a i (A.get a j);
A.set a j tmp
)
(* limit: under which we switch to insertion *)
let sort ~limit ~cmp a =
let rec insert_ a i k =
if k<i then ()
else if cmp (A.get a k) (A.get a (k+1)) > 0 then (
swap_ a k (k+1);
insert_ a i (k-1)
)
in
(* recursive part of insertion sort *)
let rec sort_insertion_rec a i j k =
if k<j then (
insert_ a i (k-1);
sort_insertion_rec a i j (k+1)
)
in
(* insertion sort, for small slices *)
let sort_insertion a i j =
if j-i > 1 then sort_insertion_rec a i j (i+1)
in
let rand = Rand.make seed_ in
(* sort slice.
There is a chance that the two pivots are equal, but it's unlikely. *)
let rec sort_slice_ ~st a i j =
if j-i>limit then (
st.l <- i;
st.g <- j-1;
st.k <- i;
(* choose pivots *)
let p = A.get a (rand_idx_ rand i j) in
let q = A.get a (rand_idx_ rand i j) in
(* invariant: st.p <= st.q, swap them otherwise *)
let p, q = if cmp p q > 0 then q, p else p, q in
while st.k <= st.g do
let cur = A.get a st.k in
if cmp cur p < 0 then (
(* insert in leftmost band *)
if st.k <> st.l then swap_ a st.k st.l;
st.l <- st.l + 1
) else if cmp cur q > 0 then (
(* insert in rightmost band *)
while st.k < st.g && cmp (A.get a st.g) q > 0 do
st.g <- st.g - 1
done;
swap_ a st.k st.g;
st.g <- st.g - 1;
(* the element swapped from the right might be in the first situation.
that is, < p (we know it's <= q already) *)
if cmp (A.get a st.k) p < 0 then (
if st.k <> st.l then swap_ a st.k st.l;
st.l <- st.l + 1
)
);
st.k <- st.k + 1
done;
(* save values before recursing *)
let l = st.l and g = st.g and sort_middle = cmp p q < 0 in
sort_slice_ ~st a i l;
if sort_middle then sort_slice_ ~st a l (g+1);
sort_slice_ ~st a (g+1) j;
) else sort_insertion a i j
in
if A.length a > 0 then (
let st = { l=0; g=A.length a; k=0; } in
sort_slice_ ~st a 0 (A.length a)
)
end
let quicksort ~limit a = Quicksort_ref.sort ~limit ~cmp:CCInt.compare a
let sort_std a = Array.sort CCInt.compare a
(* helper, to apply a sort function over a list of arrays *)
let app_list sort l =
List.iter
(fun a ->
let a = Array.copy a in
sort a
) l
let () =
List.iter
(fun n ->
let a1 = mk_arr n in
let a2 = Array.copy a1 in
sort_std a1;
quicksort ~limit:10 a2;
assert (CCArray.equal CCInt.equal a1 a2))
[ 10; 100; 1000]
let bench_sort ?(time=2) n =
let a1 = mk_arr n in
let a2 = mk_arr n in
let a3 = mk_arr n in
B.throughputN time ~repeat
[ "std", app_list sort_std, [a1;a2;a3]
; "ccarray.sort_gen", app_list sort_ccarray, [a1;a2;a3]
; "ccarray.quicksort(limit=5)", app_list (quicksort ~limit:5), [a1;a2;a3]
; "ccarray.quicksort(limit=10)", app_list (quicksort ~limit:10), [a1;a2;a3]
; "ccarray.quicksort(limit=20)", app_list (quicksort ~limit:20), [a1;a2;a3]
]
let () =
B.Tree.register ("array" @>>>
[ "sort" @>>
app_ints (bench_sort ?time:None) [50; 100; 1000; 10_000; 50_000; 100_000; 500_000]
]
)
end
module Vec = struct
let f x = x+1
let map_push_ f v =
let v' = CCVector.create () in
CCVector.iter (fun x -> CCVector.push v' (f x)) v;
v'
let map_push_size_ f v =
let v' = CCVector.create_with ~capacity:(CCVector.length v) 0 in
CCVector.iter (fun x -> CCVector.push v' (f x)) v;
v'
let bench_map n =
let v = CCVector.init n (fun x->x) in
B.throughputN 2 ~repeat
[ "map", CCVector.map f, v
; "map_push", map_push_ f, v
; "map_push_cap", map_push_size_ f, v
]
let try_append_ app n v2 () =
let v1 = CCVector.init n (fun x->x) in
app v1 v2;
assert (CCVector.length v1 = 2*n);
()
let append_naive_ v1 v2 =
CCVector.iter (fun x -> CCVector.push v1 x) v2
let bench_append n =
let v2 = CCVector.init n (fun x->n+x) in
B.throughputN 2 ~repeat
[ "append", try_append_ CCVector.append n v2, ()
; "append_naive", try_append_ append_naive_ n v2, ()
]
let () = B.Tree.register (
"vector" @>>>
[ "map" @>> app_ints bench_map [100; 10_000; 100_000]
; "append" @>> app_ints bench_append [100; 10_000; 50_000]
]
)
end
module Cache = struct
module C = CCCache
let make_fib c =
let f = C.with_cache_rec c
(fun fib n -> match n with
| 0 -> 0
| 1 -> 1
| 2 -> 1
| n -> fib (n-1) + fib (n-2)
)
in
fun x ->
C.clear c;
f x
let bench_fib n =
let l =
[ "replacing_fib (128)", make_fib (C.replacing ~eq:CCInt.equal 128), n
; "LRU_fib (128)", make_fib (C.lru ~eq:CCInt.equal 128), n
; "replacing_fib (16)", make_fib (C.replacing ~eq:CCInt.equal 16), n
; "LRU_fib (16)", make_fib (C.lru ~eq:CCInt.equal 16), n
; "unbounded", make_fib (C.unbounded ~eq:CCInt.equal 32), n
]
in
let l = if n <= 20
then [ "linear_fib (5)", make_fib (C.linear ~eq:CCInt.equal 5), n
; "linear_fib (32)", make_fib (C.linear ~eq:CCInt.equal 32), n
; "dummy_fib", make_fib C.dummy, n
] @ l
else l
in
B.throughputN 3 l ~repeat
let () = B.Tree.register (
"cache" @>>>
[ "fib" @>> app_ints bench_fib [10; 20; 100; 200; 1_000;]
]
)
end
module Tbl = struct
(** Signature for mutable map *)
module type MUT = sig
type key
type 'a t
val name : string
val find : 'a t -> key -> 'a
val create : int -> 'a t
val add : 'a t -> key -> 'a -> unit
val replace : 'a t -> key -> 'a -> unit
end
module type INT_MUT = MUT with type key = int
module type STRING_MUT = MUT with type key = string
module type IMMUT = sig
type key
type 'a t
val name : string
val empty : 'a t
val find : key -> 'a t -> 'a
val add : key -> 'a -> 'a t -> 'a t
end
module type INT_IMMUT = IMMUT with type key = int
module MUT_OF_IMMUT(T : IMMUT)
: MUT with type key = T.key and type 'a t = 'a T.t ref = struct
type key = T.key
type 'a t = 'a T.t ref
let name = T.name
let create _ = ref T.empty
let find m k = T.find k !m
let add m k v = m := T.add k v !m
let replace = add
end
module type KEY = sig
type t
val equal : t -> t -> bool
val hash : t -> int
val compare : t -> t -> int
end
type _ key_type =
| Int : int key_type
| Str : string key_type
let arg_make : type a. a key_type -> (module KEY with type t = a) * string
= function
| Int -> (module CCInt), "int"
| Str -> (module CCString : KEY with type t = string), "string"
let sprintf = Printf.sprintf
let hashtbl_make : type a. a key_type -> (module MUT with type key = a)
= fun key ->
let (module Key), name = arg_make key in
let module T = struct
let name = sprintf "hashtbl(%s)" name
include Hashtbl.Make(Key)
end in
(module T)
let persistent_hashtbl_ref : type a. a key_type -> (module MUT with type key = a)
= fun key ->
let (module Key), name = arg_make key in
let module T = Ref_impl.PersistentHashtbl(Key) in
let module U = struct
type key = a
type 'a t = 'a T.t ref
let name = sprintf "persistent_tbl_old(%s)" name
let create _ = ref (T.empty ())
let find m k = T.find !m k
let add m k v = m := T.replace !m k v
let replace = add
end in
(module U)
let persistent_hashtbl : type a. a key_type -> (module MUT with type key = a)
= fun key ->
let (module Key), name = arg_make key in
let module T = CCPersistentHashtbl.Make(Key) in
let module U = struct
type key = a
type 'a t = 'a T.t ref
let name = sprintf "persistent_tbl(%s)" name
let create _ = ref (T.empty ())
let find m k = T.find !m k
let add m k v = m := T.replace !m k v
let replace = add
end in
(module U)
let hashtbl =
let module T = struct
type key = int
type 'a t = (int, 'a) Hashtbl.t
let name = "hashtbl"
let create i = Hashtbl.create i
let find = Hashtbl.find
let add = Hashtbl.add
let replace = Hashtbl.replace
end in
(module T : INT_MUT)
let map : type a. a key_type -> (module MUT with type key = a)
= fun k ->
let (module K), name = arg_make k in
let module T = struct let name = sprintf "map(%s)" name include Map.Make(K) end in
let module U = MUT_OF_IMMUT(T) in
(module U : MUT with type key = a)
let wbt : type a. a key_type -> (module MUT with type key = a)
= fun k ->
let (module K), name = arg_make k in
let module T = struct
let name = sprintf "ccwbt(%s)" name
include CCWBTree.Make(K)
let find = get_exn
end in
let module U = MUT_OF_IMMUT(T) in
(module U : MUT with type key = a)
let trie : (module MUT with type key = string) =
let module T = struct
let name = "trie(string)"
include CCTrie.String
let find = find_exn
end in
let module U = MUT_OF_IMMUT(T) in
(module U)
let hashtrie : type a. a key_type -> (module MUT with type key = a)
= fun k ->
let (module K), name = arg_make k in
let module T = struct
let name = sprintf "cchashtrie(%s)" name
include CCHashTrie.Make(K)
let find = get_exn
end in
let module U = MUT_OF_IMMUT(T) in
(module U)
let hashtrie_mut : type a. a key_type -> (module MUT with type key = a)
= fun k ->
let (module K), name = arg_make k in
let module T = struct
let name = sprintf "cchashtrie_mut(%s)" name
type key = K.t
module M = CCHashTrie.Make(K)
type 'a t = {
id: CCHashTrie.Transient.t;
mutable map: 'a M.t;
}
let create _ = { id=CCHashTrie.Transient.create(); map=M.empty}
let find m k = M.get_exn k m.map
let add m k v = m.map <- M.add_mut ~id:m.id k v m.map
let replace = add
end in
(module T)
(*
let hamt : type a. a key_type -> (module MUT with type key = a)
= fun k ->
let (module K), name = arg_make k in
let module T = struct
let name = sprintf "hamt(%s)" name
include Hamt.Make(Hamt.StdConfig)(K)
let find = find_exn
end in
let module U = MUT_OF_IMMUT(T) in
(module U)
*)
let modules_int =
[ hashtbl_make Int
; hashtbl
; persistent_hashtbl Int
(* ; poly_hashtbl *)
; map Int
; wbt Int
; hashtrie Int
; hashtrie_mut Int
(* ; hamt Int *)
]
let modules_string =
[ hashtbl_make Str
; map Str
; wbt Str
; hashtrie Str
; persistent_hashtbl Str
(* ; hamt Str *)
; trie
]
let bench_add_to which n =
let make (module T : INT_MUT) =
let run() =
let t = T.create 50 in
for i = n downto 0 do
T.add t i i;
done
in
T.name, run, ()
in
B.throughputN 3 ~repeat (List.map make which)
let bench_add = bench_add_to modules_int
let bench_add_string_to l n =
let keys = CCList.( 1 -- n |> map (fun i->string_of_int i,i)) in
let make (module T : STRING_MUT) =
let run() =
let t = T.create 50 in
List.iter
(fun (k,v) -> T.add t k v)
keys
in
T.name, run, ()
in
B.throughputN 3 ~repeat (List.map make l)
let bench_add_string = bench_add_string_to modules_string
let bench_replace n =
let make (module T : INT_MUT) =
let run() =
let t = T.create 50 in
for i = 0 to n do
T.replace t i i;
done;
for i = n downto 0 do
T.replace t i i;
done;
()
in
T.name, run, ()
in
B.throughputN 3 ~repeat (List.map make modules_int)
module type INT_FIND = sig
type 'a t
val name : string
val init : int -> (int -> 'a) -> 'a t
val find : 'a t -> int -> 'a
end
let find_of_mut (module T : INT_MUT) : (module INT_FIND) =
let module U = struct
include T
let init n f =
let t = T.create n in
for i=0 to n-1 do T.add t i (f i) done;
t
end in
(module U)
let array =
let module T = struct
type 'a t = 'a array
let name = "array"
let init = Array.init
let find a i = a.(i)
end in
(module T : INT_FIND)
let persistent_array =
let module A = CCPersistentArray in
let module T = struct
type 'a t = 'a A.t
let name = "persistent_array"
let init = A.init
let find = A.get
end in
(module T : INT_FIND)
let modules_int_find =
[ array
; persistent_array ] @
List.map find_of_mut modules_int
let bench_find_to which n =
let make (module T : INT_FIND) =
let m = T.init n (fun i -> i) in
let run() =
for i = 0 to n-1 do
ignore (T.find m i)
done
in
T.name, run, ()
in
Benchmark.throughputN 3 ~repeat (List.map make which)
let bench_find = bench_find_to modules_int_find
let bench_find_string_to l n =
let keys = CCList.( 1 -- n |> map (fun i->string_of_int i,i)) in
let make (module T : STRING_MUT) =
let m = T.create n in
List.iter (fun (k,v) -> T.add m k v) keys;
let run() =
List.iter
(fun (k,_) -> ignore (T.find m k))
keys
in
T.name, run, ()
in
Benchmark.throughputN 3 ~repeat (List.map make l)
let bench_find_string = bench_find_string_to modules_string
let () =
B.Tree.register ("tbl" @>>>
[ "add_int" @>> app_ints bench_add [10; 100; 1_000; 10_000;]
; "add_string" @>> app_ints bench_add_string [10; 100; 1_000; 10_000;]
; "replace" @>> app_ints bench_replace [10; 100; 1_000; 10_000]
; "find" @>> app_ints bench_find [10; 20; 100; 1_000; 10_000]
; "find_string" @>> app_ints bench_find_string [10; 20; 100; 1_000; 10_000]
]);
B.Tree.register ("tbl_persistent" @>>>
(* we also compare to the regular Hashtbl, as a frame of reference *)
let l_int = [persistent_hashtbl Int; persistent_hashtbl_ref Int; hashtbl_make Int ] in
let l_str = [persistent_hashtbl Str; persistent_hashtbl_ref Str; hashtbl_make Str ] in
[ "add_int" @>> app_ints (bench_add_to l_int) [10; 100; 1_000; 10_000;]
; "find_int" @>> app_ints
(bench_find_to (List.map find_of_mut l_int))
[10; 20; 100; 1_000; 10_000]
; "add_string" @>> app_ints
(bench_add_string_to l_str) [10; 100; 1_000; 10_000;]
; "find_string" @>> app_ints
(bench_find_string_to l_str) [10; 20; 100; 1_000; 10_000]
]);
()
end
module Iter_ = struct
(** {2 Iter/Gen} *)
let bench_fold n =
let iter () = Iter.fold (+) 0 Iter.(0 --n) in
let gen () = Gen.fold (+) 0 Gen.(0 -- n) in
let oseq () = OSeq.fold (+) 0 OSeq.(0 -- n) in
B.throughputN 3 ~repeat
[ "iter.fold", iter, ();
"gen.fold", gen, ();
"oseq.fold", oseq, ();
]
let bench_flat_map n =
let iter () = Iter.(
0 -- n |> flat_map (fun x -> x-- (x+10)) |> fold (+) 0
)
and gen () = Gen.(
0 -- n |> flat_map (fun x -> x-- (x+10)) |> fold (+) 0
)
and oseq () = OSeq.(
0 -- n |> flat_map (fun x -> x-- (x+10)) |> fold (+) 0
)
in
B.throughputN 3 ~repeat
[ "iter.flat_map", iter, ();
"gen.flat_map", gen, ();
"oseq.flat_map", oseq, ();
]
let bench_iter n =
let iter () =
let i = ref 2 in
Iter.(
1 -- n |> iter (fun x -> i := !i * x)
)
and gen () =
let i = ref 2 in
Gen.(
1 -- n |> iter (fun x -> i := !i * x)
)
and oseq () =
let i = ref 2 in
OSeq.(
1 -- n |> iter (fun x -> i := !i * x)
)
in
B.throughputN 3 ~repeat
[ "iter.iter", iter, ();
"gen.iter", gen, ();
"oseq.iter", oseq, ();
]
let bench_to_array n =
let iter () = Iter.to_array (Iter.(1 -- n))
and gen () = Gen.to_array (Gen.(1 -- n))
and oseq () = OSeq.to_array (OSeq.(1 -- n)) in
B.throughputN 3 ~repeat
[ "iter.to_array", iter, ();
"gen.to_array", gen, ();
"oseq.to_array", oseq, ();
]
let bench_cons n =
let gen_cons x xs =
let saw_x = ref false in
fun () ->
if !saw_x then (saw_x := true; Some x)
else xs ()
in
let xs = Array.init n CCFun.id in
let iter () = ignore (Array.fold_right Iter.cons xs Iter.empty : int Iter.t) in
let gen () = ignore (Array.fold_right gen_cons xs Gen.empty : int Gen.t) in
let oseq () = ignore (Array.fold_right OSeq.cons xs OSeq.empty : int OSeq.t) in
B.throughputN 3 ~repeat
[ "iter.cons", iter, ();
"gen.cons", gen, ();
"oseq.cons", oseq, ();
]
let bench_cons_fold n =
let gen_cons x xs =
let saw_x = ref false in
fun () ->
if !saw_x then (saw_x := true; Some x)
else xs ()
in
let xs = Array.init n CCFun.id in
let iter () = Iter.fold (+) 0 (Array.fold_right Iter.cons xs Iter.empty) in
let gen () = Gen.fold (+) 0 (Array.fold_right gen_cons xs Gen.empty) in
let oseq () = OSeq.fold (+) 0 (Array.fold_right OSeq.cons xs OSeq.empty) in
B.throughputN 3 ~repeat
[ "iter.cons_fold", iter, ();
"gen.cons_fold", gen, ();
"oseq.cons_fold", oseq, ();
]
let () = B.Tree.register (
"iter" @>>>
[ "fold" @>> app_ints bench_fold [100; 1_000; 10_000; 1_000_000]
; "flat_map" @>> app_ints bench_flat_map [1_000; 10_000]
; "iter" @>> app_ints bench_iter [1_000; 10_000]
; "to_array" @>> app_ints bench_to_array [1_000; 10_000]
; "cons" @>> app_ints bench_cons [1_000; 10_000; 100_000]
; "cons_fold" @>> app_ints bench_cons_fold [1_000; 10_000; 100_000]
])
end
module Deque = struct
module type DEQUE = sig
type 'a t
val create : unit -> 'a t
val of_seq : 'a Iter.t -> 'a t
val iter : ('a -> unit) -> 'a t -> unit
val push_front : 'a t -> 'a -> unit
val push_back : 'a t -> 'a -> unit
val is_empty : 'a t -> bool
val take_front : 'a t -> 'a
val take_back : 'a t -> 'a
val append_back : into:'a t -> 'a t -> unit
val length : _ t -> int
end
module Base : DEQUE = struct
type 'a elt = {
content : 'a;
mutable prev : 'a elt;
mutable next : 'a elt;
} (** A cell holding a single element *)
and 'a t = 'a elt option ref
(** The deque, a double linked list of cells *)
exception Empty
let create () = ref None
let is_empty d =
match !d with
| None -> true
| Some _ -> false
let push_front d x =
match !d with
| None ->
let rec elt = {
content = x; prev = elt; next = elt;
} in
d := Some elt
| Some first ->
let elt = { content = x; prev = first.prev; next=first; } in
first.prev.next <- elt;
first.prev <- elt;
d := Some elt
let push_back d x =
match !d with
| None ->
let rec elt = {
content = x; prev = elt; next = elt; } in
d := Some elt
| Some first ->
let elt = { content = x; next=first; prev=first.prev; } in
first.prev.next <- elt;
first.prev <- elt
let take_back d =
match !d with
| None -> raise Empty
| Some first when Stdlib.(==) first first.prev ->
(* only one element *)
d := None;
first.content
| Some first ->
let elt = first.prev in
elt.prev.next <- first;
first.prev <- elt.prev; (* remove [first.prev] from list *)
elt.content
let take_front d =
match !d with
| None -> raise Empty
| Some first when Stdlib.(==) first first.prev ->
(* only one element *)
d := None;
first.content
| Some first ->
first.prev.next <- first.next; (* remove [first] from list *)
first.next.prev <- first.prev;
d := Some first.next;
first.content
let iter f d =
match !d with
| None -> ()
| Some first ->
let rec iter elt =
f elt.content;
if elt.next != first then iter elt.next
in
iter first
let of_seq seq =
let q =create () in seq (push_back q); q
let append_back ~into q = iter (push_back into) q
let length q =
let n = ref 0 in
iter (fun _ -> incr n) q;
!n
end
module FQueue : DEQUE = struct
type 'a t = 'a CCFQueue.t ref
let create () = ref CCFQueue.empty
let of_seq s = ref (CCFQueue.of_seq s)
let iter f q = CCFQueue.iter f !q
let push_front q x = q:= CCFQueue.cons x !q
let push_back q x = q:= CCFQueue.snoc !q x
let is_empty q = CCFQueue.is_empty !q
let take_front q =
let x, q' = CCFQueue.take_front_exn !q in
q := q';
x
let take_back q =
let q', x = CCFQueue.take_back_exn !q in
q := q';
x
let append_back ~into q = into := CCFQueue.append !into !q
let length q = CCFQueue.size !q
end
let base = (module Base : DEQUE)
let cur = (module CCDeque : DEQUE)
let fqueue = (module FQueue : DEQUE)
let bench_iter n =
let seq = Iter.(1 -- n) in
let make (module D : DEQUE) =
let q = D.of_seq seq in
fun () ->
let n = ref 0 in
D.iter (fun _ -> incr n) q;
()
in
B.throughputN 3 ~repeat
[ "base", make base, ()
; "cur", make cur, ()
; "fqueue", make fqueue, ()
]
let bench_push_front n =
let make (module D : DEQUE) () =
let q = D.create() in
for i=0 to n do D.push_front q i done
in
B.throughputN 3 ~repeat
[ "base", make base, ()
; "cur", make cur, ()
; "fqueue", make fqueue, ()
]
let bench_push_back n =
let make (module D : DEQUE) =
let q = D.create() in
fun () ->
for i=0 to n do D.push_back q i done
in
B.throughputN 3 ~repeat
[ "base", make base, ()
; "cur", make cur, ()
; "fqueue", make fqueue, ()
]
let bench_append n =
let seq = Iter.(1 -- n) in
let make (module D :DEQUE) =
let q1 = D.of_seq seq in
let q2 = D.of_seq seq in
fun () -> D.append_back ~into:q1 q2
in
B.throughputN 3 ~repeat
[ "base", make base, ()
; "cur", make cur, ()
; "fqueue", make fqueue, ()
]
let bench_length n =
let seq = Iter.(1--n) in
let make (module D:DEQUE) =
let q = D.of_seq seq in
fun () -> ignore (D.length q)
in
B.throughputN 3 ~repeat
[ "base", make base, ()
; "cur", make cur, ()
; "fqueue", make fqueue, ()
]
let () = B.Tree.register (
"deque" @>>>
[ "iter" @>> app_ints bench_iter [100; 1_000; 100_000]
; "push_front" @>> app_ints bench_push_front [100; 1_000; 100_000]
; "push_back" @>> app_ints bench_push_back [100; 1_000; 100_000]
; "append_back" @>> app_ints bench_append [100; 1_000; 100_000]
; "length" @>> app_ints bench_length [100; 1_000]
]
)
end
module Graph = struct
(* divisors graph *)
let div_children_ i =
(* divisors of [i] that are [>= j] *)
let rec aux j i yield =
if j < i
then (
if (i mod j = 0) then yield (i,j);
aux (j+1) i yield
)
in
aux 1 i
let div_graph_ = CCGraph.divisors_graph
module H = Hashtbl.Make(CCInt)
let dfs_raw n () =
let explored = H.create (n+10) in
let st = Stack.create() in
let res = ref 0 in
Stack.push n st;
while not (Stack.is_empty st) do
let i = Stack.pop st in
if not (H.mem explored i) then (
H.add explored i ();
incr res;
div_children_ i (fun (_,j) -> Stack.push j st);
)
done;
!res
let dfs_ n () =
let tbl = CCGraph.mk_table ~eq:CCInt.equal ~hash:CCInt.hash (n+10) in
CCGraph.Traverse.dfs ~tbl ~graph:div_graph_
(Iter.return n)
|> Iter.fold (fun acc _ -> acc+1) 0
let dfs_event n () =
let tbl = CCGraph.mk_table ~eq:CCInt.equal ~hash:CCInt.hash (n+10) in
CCGraph.Traverse.Event.dfs ~tbl ~eq:CCInt.equal ~graph:div_graph_
(Iter.return n)
|> Iter.fold
(fun acc -> function
| `Enter _ -> acc+1
| `Exit _
| `Edge _ -> acc)
0
let bench_dfs n =
assert (
let n1 = dfs_raw n () in
let n2 = dfs_ n () in
let n3 = dfs_event n () in
n1 = n2 &&
n2 = n3);
B.throughputN 2 ~repeat
[ "raw", dfs_raw n, ()
; "ccgraph", dfs_ n, ()
; "ccgraph_event", dfs_event n, ()
]
let () =
B.Tree.register ("graph" @>>>
[ "dfs" @>>
app_ints bench_dfs [100; 1000; 10_000; 50_000; 100_000; 500_000]
]
)
end
module Str = struct
(* random string, but always returns the same for a given size *)
let rand_str_ ?(among="abcdefgh") n =
let module Q = QCheck in
let st = Random.State.make [| n + 17 |] in
let gen_c = QCheck.Gen.oneofl (CCString.to_list among) in
QCheck.Gen.string_size ~gen:gen_c (QCheck.Gen.return n) st
let find ?(start=0) ~sub s =
let n = String.length sub in
let i = ref start in
try
while !i + n <= String.length s do
if CCString.is_sub ~sub 0 s !i ~sub_len:n then raise Exit;
incr i
done;
-1
with Exit ->
!i
let rfind ~sub s =
let n = String.length sub in
let i = ref (String.length s - n) in
try
while !i >= 0 do
if CCString.is_sub ~sub 0 s !i ~sub_len:n then raise Exit;
decr i
done;
~-1
with Exit ->
!i
let find_all ?(start=0) ~sub s =
let i = ref start in
fun () ->
let res = find ~sub s ~start:!i in
if res = ~-1 then None
else (
i := res + 1;
Some res
)
let find_all_l ?start ~sub s = find_all ?start ~sub s |> Gen.to_list
let pp_pb needle haystack =
Format.printf "search needle `%s` in `%s`...@."
needle (String.sub haystack 0 (min 300 (String.length haystack)))
(* benchmark String.{,r}find *)
let bench_find_ ~dir ~size n =
let needle = rand_str_ size in
let haystack = rand_str_ n in
pp_pb needle haystack;
let mk_naive = match dir with
| `Direct -> fun () -> find ~sub:needle haystack
| `Reverse -> fun () -> rfind ~sub:needle haystack
and mk_current = match dir with
| `Direct -> fun () -> CCString.find ~sub:needle haystack
| `Reverse -> fun () -> CCString.rfind ~sub:needle haystack
and mk_current_compiled = match dir with
| `Direct -> let f = CCString.find ~start:0 ~sub:needle in fun () -> f haystack
| `Reverse -> let f = CCString.rfind ~sub:needle in fun () -> f haystack
in
assert (mk_naive () = mk_current ());
B.throughputN 3 ~repeat
[ "naive", mk_naive, ()
; "current", mk_current, ()
; "current_compiled", mk_current_compiled, ()
]
(* benchmark String.find_all *)
let bench_find_all ~size n =
let needle = rand_str_ size in
let haystack = rand_str_ n in
pp_pb needle haystack;
let mk_naive () = find_all_l ~sub:needle haystack
and mk_current () = CCString.find_all_l ~sub:needle haystack
and mk_current_compiled =
let f = CCString.find_all_l ~start:0 ~sub:needle in fun () -> f haystack in
assert (CCList.equal CCInt.equal (mk_naive ()) (mk_current ()));
B.throughputN 3 ~repeat
[ "naive", mk_naive, ()
; "current", mk_current, ()
; "current_compiled", mk_current_compiled, ()
]
(* benchmark String.find_all on constant strings *)
let bench_find_all_special ~size n =
let needle = CCString.repeat "a" (size-1) ^ "b" in
let haystack = CCString.repeat "a" n in
pp_pb needle haystack;
let mk_naive () = find_all_l ~sub:needle haystack
and mk_current () = CCString.find_all_l ~sub:needle haystack in
assert (CCList.equal CCInt.equal (mk_naive ()) (mk_current ()));
B.throughputN 3 ~repeat
[ "naive", mk_naive, ()
; "current", mk_current, ()
]
let bench_find = bench_find_ ~dir:`Direct
let bench_rfind = bench_find_ ~dir:`Reverse
module Pre = struct
let prefix_rec ~pre s =
let rec same s1 s2 i =
if i = String.length s1 then true
else (
CCChar.equal (String.unsafe_get s1 i) (String.unsafe_get s2 i) && same s1 s2 (i+1)
)
in
String.length pre <= String.length s &&
same pre s 0
let prefix_while ~pre s =
String.length pre <= String.length s &&
begin
let i = ref 0 in
while !i < String.length pre &&
CCChar.equal (String.unsafe_get s !i) (String.unsafe_get pre !i)
do incr i done;
!i = String.length pre
end
exception Exit_false
let prefix_for_exn ~pre s =
String.length pre <= String.length s &&
try
for i=0 to String.length pre-1 do
if String.unsafe_get s i != String.unsafe_get pre i
then raise Exit_false
done;
true
with Exit_false -> false
let prefix_sub ~pre:prfx s =
let len_s = String.length s in
let len_p = String.length prfx in
if len_s < len_p then
false
else
let sub = String.sub s 0 len_p in
CCString.equal prfx sub
let bat_prefix ~pre:p str =
let len = String.length p in
if String.length str < len then false
else
let rec loop str p i =
if i = len then true
else if not (CCChar.equal (String.unsafe_get str i) (String.unsafe_get p i)) then false
else loop str p (i + 1)
in loop str p 0
let make ~max_len ~max_len_prefix n =
let rand = Random.State.make_self_init () in
let input =
Array.init n
(fun _ ->
let str =
QCheck.Gen.(string_size ~gen:printable (10 -- max_len))
|> QCheck.Gen.generate1 ~rand
in
let prfx_len = Random.State.int rand (min max_len_prefix (String.length str + 1)) in
let prfx =
if Random.State.bool rand then
String.sub str 0 prfx_len
else
String.sub str (String.length str - prfx_len) prfx_len
in
(prfx, str))
in
let output =
Array.map
(fun (pre, str) -> prefix_rec ~pre str)
input
in
let test f () =
Array.iteri
(fun i (pre, y) ->
let res = f ~pre y in
assert (CCBool.equal res output.(i)))
input
in
Benchmark.throughputN 3
[
"containers", test CCString.prefix, ();
"while_unsafe", test prefix_while, ();
"rec_unsafe", test prefix_rec, ();
"for_exn_unsafe", test prefix_for_exn, ();
"sub_eq", test prefix_sub, ();
"bat_prefix", test bat_prefix, ();
]
end
let () = B.Tree.register (
"string" @>>>
[ "find" @>>>
[ "3" @>> app_ints (bench_find ~size:3) [100; 100_000; 500_000]
; "5" @>> app_ints (bench_find ~size:5) [100; 100_000; 500_000]
; "15" @>> app_ints (bench_find ~size:15) [100; 100_000; 500_000]
; "50" @>> app_ints (bench_find ~size:50) [100; 100_000; 500_000]
; "500" @>> app_ints (bench_find ~size:500) [100_000; 500_000]
];
"find_all" @>>>
[ "1" @>> app_ints (bench_find_all ~size:1) [100; 100_000; 500_000]
; "3" @>> app_ints (bench_find_all ~size:3) [100; 100_000; 500_000]
; "5" @>> app_ints (bench_find_all ~size:5) [100; 100_000; 500_000]
; "15" @>> app_ints (bench_find_all ~size:15) [100; 100_000; 500_000]
; "50" @>> app_ints (bench_find_all ~size:50) [100; 100_000; 500_000]
; "500" @>> app_ints (bench_find_all ~size:500) [100_000; 500_000]
; "special" @>>>
[ "6" @>> app_ints (bench_find_all_special ~size:6) [100_000; 500_000]
; "30" @>> app_ints (bench_find_all_special ~size:30) [100_000; 500_000]
; "100" @>> app_ints (bench_find_all_special ~size:100) [100_000; 500_000]
]
];
"rfind" @>>>
[ "3" @>> app_ints (bench_rfind ~size:3) [100; 100_000; 500_000]
; "15" @>> app_ints (bench_rfind ~size:15) [100; 100_000; 500_000]
; "50" @>> app_ints (bench_rfind ~size:50) [100; 100_000; 500_000]
; "500" @>> app_ints (bench_rfind ~size:500) [100_000; 500_000]
];
"prefix" @>>>
[ "max_len:1000,max_pre_len:15" @>> app_ints (Pre.make ~max_len:1000 ~max_len_prefix:15) [100; 1_000];
"max_len:1000,max_pre_len:100" @>> app_ints (Pre.make ~max_len:1000 ~max_len_prefix:100) [100; 1_000];
"max_len:1000,max_pre_len:300" @>> app_ints (Pre.make ~max_len:1000 ~max_len_prefix:300) [100; 1_000];
]
])
end
let () =
try B.Tree.run_global ()
with Arg.Help msg -> print_endline msg