ocaml-containers/benchs/run_benchs.ml
2016-01-26 01:33:38 +01:00

1208 lines
31 KiB
OCaml

(** Generic benchs *)
module B = Benchmark
let (@>) = B.Tree.(@>)
let (@>>) = B.Tree.(@>>)
let (@>>>) = B.Tree.(@>>>)
let (|>) = CCFun.(|>)
let app_int f n = string_of_int n @> lazy (f n)
let app_ints f l = B.Tree.concat (List.map (app_int f) l)
(* for benchmark *)
let repeat = 3
(* composition *)
let (%%) f g x = f (g x)
module L = struct
(* MAP *)
let f_ x = x+1
let bench_map ?(time=2) n =
let l = CCList.(1 -- n) in
let ral = CCRAL.of_list l in
let map_naive () = ignore (try List.map f_ l with Stack_overflow -> [])
and map_tailrec () = ignore (List.rev (List.rev_map f_ l))
and ccmap () = ignore (CCList.map f_ l)
and ralmap () = ignore (CCRAL.map ~f:f_ ral)
in
B.throughputN time ~repeat
[ "List.map", map_naive, ()
; "List.rev_map o rev", map_tailrec, ()
; "CCList.map", ccmap, ()
; "CCRAL.map", ralmap, ()
]
(* FLAT MAP *)
let f_ x =
if x mod 10 = 0 then []
else if x mod 5 = 1 then [x;x+1]
else [x;x+1;x+2;x+3]
let bench_flat_map ?(time=2) n =
let l = CCList.(1 -- n) in
let flatten_map_ l = List.flatten (CCList.map f_ l)
and flatten_ccmap_ l = List.flatten (List.map f_ l) in
B.throughputN time ~repeat
[ "flat_map", CCList.flat_map f_, l
; "flatten o CCList.map", flatten_ccmap_, l
; "flatten o map", flatten_map_, l
]
(* APPEND *)
let append_ f (l1, l2, l3) =
ignore (f (f l1 l2) l3)
let bench_append ?(time=2) n =
let l1 = CCList.(1 -- n) in
let l2 = CCList.(n+1 -- 2*n) in
let l3 = CCList.(2*n+1 -- 3*n) in
let arg = l1, l2, l3 in
B.throughputN time ~repeat
[ "CCList.append", append_ CCList.append, arg
; "List.append", append_ List.append, arg
]
(* FLATTEN *)
let bench_flatten ?(time=2) n =
let fold_right_append_ l =
List.fold_right List.append l []
and cc_fold_right_append_ l =
CCList.fold_right CCList.append l []
in
let l =
CCList.Idx.mapi
(fun i x -> CCList.(x -- (x+ min i 100)))
CCList.(1 -- n)
in
B.throughputN time ~repeat
[ "CCList.flatten", CCList.flatten, l
; "List.flatten", List.flatten, l
; "fold_right append", fold_right_append_, l
; "CCList.(fold_right append)", cc_fold_right_append_, l
]
(* MAIN *)
let () = B.Tree.register (
"list" @>>>
[ "map" @>>
B.Tree.concat
[ app_int (bench_map ~time:2) 100
; app_int (bench_map ~time:2) 10_000
; app_int (bench_map ~time:4) 100_000
; app_int (bench_map ~time:4) 500_000 ]
; "flat_map" @>>
B.Tree.concat
[ app_int (bench_flat_map ~time:2) 100
; app_int (bench_flat_map ~time:2) 10_000
; app_int (bench_flat_map ~time:4) 100_000]
; "flatten" @>>
B.Tree.concat
[ app_int (bench_flatten ~time:2) 100
; app_int (bench_flatten ~time:2) 10_000
; app_int (bench_flatten ~time:4) 100_000]
; "append" @>>
B.Tree.concat
[ app_int (bench_append ~time:2) 100
; app_int (bench_append ~time:2) 10_000
; app_int (bench_append ~time:4) 100_000]
]
)
end
module Arr = struct
let rand = Random.State.make [| 1;2;3;4 |]
let mk_arr n =
Array.init n (fun _ -> Random.State.int rand 5_000)
module IntArr = struct
type elt=int
type t = int array
let get = Array.get
let set = Array.set
let length = Array.length
end
let sort_ccarray a =
CCArray.sort_generic (module IntArr) ~cmp:CCInt.compare a
let sort_std a = Array.sort CCInt.compare a
(* helper, to apply a sort function over a list of arrays *)
let app_list sort l =
List.iter
(fun a ->
let a = Array.copy a in
sort a
) l
let bench_sort ?(time=2) n =
let a1 = mk_arr n in
let a2 = mk_arr n in
let a3 = mk_arr n in
B.throughputN time ~repeat
[ "std", app_list sort_std, [a1;a2;a3]
; "ccarray.sort_gen", app_list sort_ccarray, [a1;a2;a3]
]
let () =
B.Tree.register ("array" @>>>
[ "sort" @>>
app_ints (bench_sort ?time:None) [100; 1000; 10_000; 50_000; 100_000; 500_000]
]
)
end
module Vec = struct
let f x = x+1
let map_push_ f v =
let v' = CCVector.create () in
CCVector.iter (fun x -> CCVector.push v' (f x)) v;
v'
let map_push_size_ f v =
let v' = CCVector.create_with ~capacity:(CCVector.length v) 0 in
CCVector.iter (fun x -> CCVector.push v' (f x)) v;
v'
let bench_map n =
let v = CCVector.init n (fun x->x) in
B.throughputN 2 ~repeat
[ "map", CCVector.map f, v
; "map_push", map_push_ f, v
; "map_push_cap", map_push_size_ f, v
]
let try_append_ app n v2 () =
let v1 = CCVector.init n (fun x->x) in
app v1 v2;
assert (CCVector.length v1 = 2*n);
()
let append_naive_ v1 v2 =
CCVector.iter (fun x -> CCVector.push v1 x) v2
let bench_append n =
let v2 = CCVector.init n (fun x->n+x) in
B.throughputN 2 ~repeat
[ "append", try_append_ CCVector.append n v2, ()
; "append_naive", try_append_ append_naive_ n v2, ()
]
let () = B.Tree.register (
"vector" @>>>
[ "map" @>> app_ints bench_map [100; 10_000; 100_000]
; "append" @>> app_ints bench_append [100; 10_000; 50_000]
]
)
end
module Cache = struct
module C = CCCache
let make_fib c =
let f = C.with_cache_rec c
(fun fib n -> match n with
| 0 -> 0
| 1 -> 1
| 2 -> 1
| n -> fib (n-1) + fib (n-2)
)
in
fun x ->
C.clear c;
f x
let bench_fib n =
let l =
[ "replacing_fib (128)", make_fib (C.replacing 128), n
; "LRU_fib (128)", make_fib (C.lru 128), n
; "replacing_fib (16)", make_fib (C.replacing 16), n
; "LRU_fib (16)", make_fib (C.lru 16), n
; "unbounded", make_fib (C.unbounded 32), n
]
in
let l = if n <= 20
then [ "linear_fib (5)", make_fib (C.linear 5), n
; "linear_fib (32)", make_fib (C.linear 32), n
; "dummy_fib", make_fib C.dummy, n
] @ l
else l
in
B.throughputN 3 l ~repeat
let () = B.Tree.register (
"cache" @>>>
[ "fib" @>> app_ints bench_fib [10; 20; 100; 200; 1_000;]
]
)
end
module Tbl = struct
(** Signature for mutable map *)
module type MUT = sig
type key
type 'a t
val name : string
val find : 'a t -> key -> 'a
val create : int -> 'a t
val add : 'a t -> key -> 'a -> unit
val replace : 'a t -> key -> 'a -> unit
end
module type INT_MUT = MUT with type key = int
module type STRING_MUT = MUT with type key = string
module type IMMUT = sig
type key
type 'a t
val name : string
val empty : 'a t
val find : key -> 'a t -> 'a
val add : key -> 'a -> 'a t -> 'a t
end
module type INT_IMMUT = IMMUT with type key = int
module MUT_OF_IMMUT(T : IMMUT)
: MUT with type key = T.key and type 'a t = 'a T.t ref = struct
type key = T.key
type 'a t = 'a T.t ref
let name = T.name
let create _ = ref T.empty
let find m k = T.find k !m
let add m k v = m := T.add k v !m
let replace = add
end
module type KEY = sig
type t
val equal : t -> t -> bool
val hash : t -> int
val compare : t -> t -> int
end
type _ key_type =
| Int : int key_type
| Str : string key_type
let arg_make : type a. a key_type -> (module KEY with type t = a) * string
= function
| Int -> (module CCInt), "int"
| Str ->
let module S = struct type t = string include CCString end in
(module S : KEY with type t = string), "string"
let sprintf = Printf.sprintf
let hashtbl_make : type a. a key_type -> (module MUT with type key = a)
= fun key ->
let (module Key), name = arg_make key in
let module T = struct
let name = sprintf "hashtbl(%s)" name
include Hashtbl.Make(Key)
end in
(module T)
let persistent_hashtbl_ref : type a. a key_type -> (module MUT with type key = a)
= fun key ->
let (module Key), name = arg_make key in
let module T = Ref_impl.PersistentHashtbl(Key) in
let module U = struct
type key = a
type 'a t = 'a T.t ref
let name = sprintf "persistent_tbl_old(%s)" name
let create _ = ref (T.empty ())
let find m k = T.find !m k
let add m k v = m := T.replace !m k v
let replace = add
end in
(module U)
let persistent_hashtbl : type a. a key_type -> (module MUT with type key = a)
= fun key ->
let (module Key), name = arg_make key in
let module T = CCPersistentHashtbl.Make(Key) in
let module U = struct
type key = a
type 'a t = 'a T.t ref
let name = sprintf "persistent_tbl(%s)" name
let create _ = ref (T.empty ())
let find m k = T.find !m k
let add m k v = m := T.replace !m k v
let replace = add
end in
(module U)
let hashtbl =
let module T = struct
type key = int
type 'a t = (int, 'a) Hashtbl.t
let name = "hashtbl"
let create i = Hashtbl.create i
let find = Hashtbl.find
let add = Hashtbl.add
let replace = Hashtbl.replace
end in
(module T : INT_MUT)
let map : type a. a key_type -> (module MUT with type key = a)
= fun k ->
let (module K), name = arg_make k in
let module T = struct let name = sprintf "map(%s)" name include Map.Make(K) end in
let module U = MUT_OF_IMMUT(T) in
(module U : MUT with type key = a)
let wbt : type a. a key_type -> (module MUT with type key = a)
= fun k ->
let (module K), name = arg_make k in
let module T = struct
let name = sprintf "ccwbt(%s)" name
include CCWBTree.Make(K)
let find = get_exn
end in
let module U = MUT_OF_IMMUT(T) in
(module U : MUT with type key = a)
let flat_hashtbl =
let module T = CCFlatHashtbl.Make(CCInt) in
let module U = struct
type key = int
type 'a t = 'a T.t
let name = "ccflat_hashtbl"
let create = T.create
let find = T.find_exn
let add = T.add
let replace = T.add
end in
(module U : INT_MUT)
let trie : (module MUT with type key = string) =
let module T = struct
let name = "trie(string)"
include CCTrie.String
let find = find_exn
end in
let module U = MUT_OF_IMMUT(T) in
(module U)
let hashtrie : type a. a key_type -> (module MUT with type key = a)
= fun k ->
let (module K), name = arg_make k in
let module T = struct
let name = sprintf "cchashtrie(%s)" name
include CCHashTrie.Make(K)
let find = get_exn
end in
let module U = MUT_OF_IMMUT(T) in
(module U)
let hashtrie_mut : type a. a key_type -> (module MUT with type key = a)
= fun k ->
let (module K), name = arg_make k in
let module T = struct
let name = sprintf "cchashtrie_mut(%s)" name
type key = K.t
module M = CCHashTrie.Make(K)
type 'a t = {
id: CCHashTrie.Transient.t;
mutable map: 'a M.t;
}
let create _ = { id=CCHashTrie.Transient.create(); map=M.empty}
let find m k = M.get_exn k m.map
let add m k v = m.map <- M.add_mut ~id:m.id k v m.map
let replace = add
end in
(module T)
let hamt : type a. a key_type -> (module MUT with type key = a)
= fun k ->
let (module K), name = arg_make k in
let module T = struct
let name = sprintf "hamt(%s)" name
include Hamt.Make(Hamt.StdConfig)(K)
let find = find_exn
end in
let module U = MUT_OF_IMMUT(T) in
(module U)
let modules_int =
[ hashtbl_make Int
; hashtbl
; persistent_hashtbl Int
(* ; poly_hashtbl *)
; map Int
; wbt Int
; flat_hashtbl
; hashtrie Int
; hashtrie_mut Int
; hamt Int
]
let modules_string =
[ hashtbl_make Str
; map Str
; wbt Str
; hashtrie Str
; persistent_hashtbl Str
; hamt Str
; trie
]
let bench_add_to which n =
let make (module T : INT_MUT) =
let run() =
let t = T.create 50 in
for i = n downto 0 do
T.add t i i;
done
in
T.name, run, ()
in
B.throughputN 3 ~repeat (List.map make which)
let bench_add = bench_add_to modules_int
let bench_add_string_to l n =
let keys = CCList.( 1 -- n |> map (fun i->string_of_int i,i)) in
let make (module T : STRING_MUT) =
let run() =
let t = T.create 50 in
List.iter
(fun (k,v) -> T.add t k v)
keys
in
T.name, run, ()
in
B.throughputN 3 ~repeat (List.map make l)
let bench_add_string = bench_add_string_to modules_string
let bench_replace n =
let make (module T : INT_MUT) =
let run() =
let t = T.create 50 in
for i = 0 to n do
T.replace t i i;
done;
for i = n downto 0 do
T.replace t i i;
done;
()
in
T.name, run, ()
in
B.throughputN 3 ~repeat (List.map make modules_int)
module type INT_FIND = sig
type 'a t
val name : string
val init : int -> (int -> 'a) -> 'a t
val find : 'a t -> int -> 'a
end
let find_of_mut (module T : INT_MUT) : (module INT_FIND) =
let module U = struct
include T
let init n f =
let t = T.create n in
for i=0 to n-1 do T.add t i (f i) done;
t
end in
(module U)
let array =
let module T = struct
type 'a t = 'a array
let name = "array"
let init = Array.init
let find a i = a.(i)
end in
(module T : INT_FIND)
let persistent_array =
let module A = CCPersistentArray in
let module T = struct
type 'a t = 'a A.t
let name = "persistent_array"
let init = A.init
let find = A.get
end in
(module T : INT_FIND)
let modules_int_find =
[ array
; persistent_array ] @
List.map find_of_mut modules_int
let bench_find_to which n =
let make (module T : INT_FIND) =
let m = T.init n (fun i -> i) in
let run() =
for i = 0 to n-1 do
ignore (T.find m i)
done
in
T.name, run, ()
in
Benchmark.throughputN 3 ~repeat (List.map make which)
let bench_find = bench_find_to modules_int_find
let bench_find_string_to l n =
let keys = CCList.( 1 -- n |> map (fun i->string_of_int i,i)) in
let make (module T : STRING_MUT) =
let m = T.create n in
List.iter (fun (k,v) -> T.add m k v) keys;
let run() =
List.iter
(fun (k,_) -> ignore (T.find m k))
keys
in
T.name, run, ()
in
Benchmark.throughputN 3 ~repeat (List.map make l)
let bench_find_string = bench_find_string_to modules_string
let () =
B.Tree.register ("tbl" @>>>
[ "add_int" @>> app_ints bench_add [10; 100; 1_000; 10_000;]
; "add_string" @>> app_ints bench_add_string [10; 100; 1_000; 10_000;]
; "replace" @>> app_ints bench_replace [10; 100; 1_000; 10_000]
; "find" @>> app_ints bench_find [10; 20; 100; 1_000; 10_000]
; "find_string" @>> app_ints bench_find_string [10; 20; 100; 1_000; 10_000]
]);
B.Tree.register ("tbl_persistent" @>>>
(* we also compare to the regular Hashtbl, as a frame of reference *)
let l_int = [persistent_hashtbl Int; persistent_hashtbl_ref Int; hashtbl_make Int ] in
let l_str = [persistent_hashtbl Str; persistent_hashtbl_ref Str; hashtbl_make Str ] in
[ "add_int" @>> app_ints (bench_add_to l_int) [10; 100; 1_000; 10_000;]
; "find_int" @>> app_ints
(bench_find_to (List.map find_of_mut l_int))
[10; 20; 100; 1_000; 10_000]
; "add_string" @>> app_ints
(bench_add_string_to l_str) [10; 100; 1_000; 10_000;]
; "find_string" @>> app_ints
(bench_find_string_to l_str) [10; 20; 100; 1_000; 10_000]
]);
()
end
module Iter = struct
(** {2 Sequence/Gen} *)
let bench_fold n =
let seq () = Sequence.fold (+) 0 Sequence.(0 --n) in
let gen () = Gen.fold (+) 0 Gen.(0 -- n) in
let klist () = CCKList.fold (+) 0 CCKList.(0 -- n) in
B.throughputN 3 ~repeat
[ "sequence.fold", seq, ();
"gen.fold", gen, ();
"klist.fold", klist, ();
]
let bench_flat_map n =
let seq () = Sequence.(
0 -- n |> flat_map (fun x -> x-- (x+10)) |> fold (+) 0
)
and gen () = Gen.(
0 -- n |> flat_map (fun x -> x-- (x+10)) |> fold (+) 0
)
and klist () = CCKList.(
0 -- n |> flat_map (fun x -> x-- (x+10)) |> fold (+) 0
)
in
B.throughputN 3 ~repeat
[ "sequence.flat_map", seq, ();
"gen.flat_map", gen, ();
"klist.flat_map", klist, ();
]
let bench_iter n =
let seq () =
let i = ref 2 in
Sequence.(
1 -- n |> iter (fun x -> i := !i * x)
)
and gen () =
let i = ref 2 in
Gen.(
1 -- n |> iter (fun x -> i := !i * x)
)
and klist () =
let i = ref 2 in
CCKList.(
1 -- n |> iter (fun x -> i := !i * x)
)
in
B.throughputN 3 ~repeat
[ "sequence.iter", seq, ();
"gen.iter", gen, ();
"klist.iter", klist, ();
]
let () = B.Tree.register (
"iter" @>>>
[ "fold" @>> app_ints bench_fold [100; 1_000; 10_000; 1_000_000]
; "flat_map" @>> app_ints bench_flat_map [1_000; 10_000]
; "iter" @>> app_ints bench_iter [1_000; 10_000]
])
end
module Batch = struct
(** benchmark CCBatch *)
module type COLL = sig
val name : string
include CCBatch.COLLECTION
val doubleton : 'a -> 'a -> 'a t
val (--) : int -> int -> int t
val equal : int t -> int t -> bool
end
module Make(C : COLL) = struct
let f1 x = x mod 2 = 0
let f2 x = -x
let f3 x = C.doubleton x (x+1)
let f4 x = -x
let collect a = C.fold (+) 0 a
let naive a =
let a = C.filter f1 a in
let a = C.flat_map f3 a in
let a = C.filter f1 a in
let a = C.map f2 a in
let a = C.flat_map f3 a in
let a = C.map f4 a in
ignore (collect a);
a
module BA = CCBatch.Make(C)
let ops =
BA.(filter f1 >>> flat_map f3 >>> filter f1 >>>
map f2 >>> flat_map f3 >>> map f4)
let batch a =
let a = BA.apply ops a in
ignore (collect a);
a
let bench_for ~time n =
let a = C.(0 -- n) in
(* debug
CCPrint.printf "naive: %a\n" (CCArray.pp CCInt.pp) (naive a);
CCPrint.printf "simple: %a\n" (CCArray.pp CCInt.pp) (batch_simple a);
CCPrint.printf "batch: %a\n" (CCArray.pp CCInt.pp) (batch a);
*)
assert (C.equal (batch a) (naive a));
B.throughputN time ~repeat
[ C.name ^ "_naive", naive, a
; C.name ^ "_batch", batch, a
]
let bench =
C.name @>> B.Tree.concat
[ app_int (bench_for ~time:1) 100
; app_int (bench_for ~time:4) 100_000
; app_int (bench_for ~time:4) 1_000_000
]
end
module BenchArray = Make(struct
include CCArray
let name = "array"
let equal a b = a=b
let doubleton x y = [| x; y |]
let fold = Array.fold_left
end)
module BenchList = Make(struct
include CCList
let name = "list"
let equal a b = a=b
let doubleton x y = [ x; y ]
let fold = List.fold_left
end)
module BenchKList = Make(struct
include CCKList
let name = "klist"
let equal a b = equal (=) a b
let doubleton x y = CCKList.of_list [ x; y ]
end)
let () = B.Tree.register (
"batch" @>> B.Tree.concat
[ BenchKList.bench
; BenchArray.bench
; BenchList.bench
])
end
module Deque = struct
module type DEQUE = sig
type 'a t
val create : unit -> 'a t
val of_seq : 'a Sequence.t -> 'a t
val iter : ('a -> unit) -> 'a t -> unit
val push_front : 'a t -> 'a -> unit
val push_back : 'a t -> 'a -> unit
val is_empty : 'a t -> bool
val take_front : 'a t -> 'a
val take_back : 'a t -> 'a
val append_back : into:'a t -> 'a t -> unit
val length : _ t -> int
end
module Base : DEQUE = struct
type 'a elt = {
content : 'a;
mutable prev : 'a elt;
mutable next : 'a elt;
} (** A cell holding a single element *)
and 'a t = 'a elt option ref
(** The deque, a double linked list of cells *)
exception Empty
let create () = ref None
let is_empty d =
match !d with
| None -> true
| Some _ -> false
let push_front d x =
match !d with
| None ->
let rec elt = {
content = x; prev = elt; next = elt;
} in
d := Some elt
| Some first ->
let elt = { content = x; prev = first.prev; next=first; } in
first.prev.next <- elt;
first.prev <- elt;
d := Some elt
let push_back d x =
match !d with
| None ->
let rec elt = {
content = x; prev = elt; next = elt; } in
d := Some elt
| Some first ->
let elt = { content = x; next=first; prev=first.prev; } in
first.prev.next <- elt;
first.prev <- elt
let take_back d =
match !d with
| None -> raise Empty
| Some first when first == first.prev ->
(* only one element *)
d := None;
first.content
| Some first ->
let elt = first.prev in
elt.prev.next <- first;
first.prev <- elt.prev; (* remove [first.prev] from list *)
elt.content
let take_front d =
match !d with
| None -> raise Empty
| Some first when first == first.prev ->
(* only one element *)
d := None;
first.content
| Some first ->
first.prev.next <- first.next; (* remove [first] from list *)
first.next.prev <- first.prev;
d := Some first.next;
first.content
let iter f d =
match !d with
| None -> ()
| Some first ->
let rec iter elt =
f elt.content;
if elt.next != first then iter elt.next
in
iter first
let of_seq seq =
let q =create () in seq (push_back q); q
let append_back ~into q = iter (push_back into) q
let length q =
let n = ref 0 in
iter (fun _ -> incr n) q;
!n
end
module FQueue : DEQUE = struct
type 'a t = 'a CCFQueue.t ref
let create () = ref CCFQueue.empty
let of_seq s = ref (CCFQueue.of_seq s)
let iter f q = CCFQueue.iter f !q
let push_front q x = q:= CCFQueue.cons x !q
let push_back q x = q:= CCFQueue.snoc !q x
let is_empty q = CCFQueue.is_empty !q
let take_front q =
let x, q' = CCFQueue.take_front_exn !q in
q := q';
x
let take_back q =
let q', x = CCFQueue.take_back_exn !q in
q := q';
x
let append_back ~into q = into := CCFQueue.append !into !q
let length q = CCFQueue.size !q
end
let base = (module Base : DEQUE)
let cur = (module CCDeque : DEQUE)
let fqueue = (module FQueue : DEQUE)
let bench_iter n =
let seq = Sequence.(1 -- n) in
let make (module D : DEQUE) =
let q = D.of_seq seq in
fun () ->
let n = ref 0 in
D.iter (fun _ -> incr n) q;
()
in
B.throughputN 3 ~repeat
[ "base", make base, ()
; "cur", make cur, ()
; "fqueue", make fqueue, ()
]
let bench_push_front n =
let make (module D : DEQUE) () =
let q = D.create() in
for i=0 to n do D.push_front q i done
in
B.throughputN 3 ~repeat
[ "base", make base, ()
; "cur", make cur, ()
; "fqueue", make fqueue, ()
]
let bench_push_back n =
let make (module D : DEQUE) =
let q = D.create() in
fun () ->
for i=0 to n do D.push_back q i done
in
B.throughputN 3 ~repeat
[ "base", make base, ()
; "cur", make cur, ()
; "fqueue", make fqueue, ()
]
let bench_append n =
let seq = Sequence.(1 -- n) in
let make (module D :DEQUE) =
let q1 = D.of_seq seq in
let q2 = D.of_seq seq in
fun () -> D.append_back ~into:q1 q2
in
B.throughputN 3 ~repeat
[ "base", make base, ()
; "cur", make cur, ()
; "fqueue", make fqueue, ()
]
let bench_length n =
let seq = Sequence.(1--n) in
let make (module D:DEQUE) =
let q = D.of_seq seq in
fun () -> ignore (D.length q)
in
B.throughputN 3 ~repeat
[ "base", make base, ()
; "cur", make cur, ()
; "fqueue", make fqueue, ()
]
let () = B.Tree.register (
"deque" @>>>
[ "iter" @>> app_ints bench_iter [100; 1_000; 100_000]
; "push_front" @>> app_ints bench_push_front [100; 1_000; 100_000]
; "push_back" @>> app_ints bench_push_back [100; 1_000; 100_000]
; "append_back" @>> app_ints bench_append [100; 1_000; 100_000]
; "length" @>> app_ints bench_length [100; 1_000]
]
)
end
module Thread = struct
module Q = CCBlockingQueue
module type TAKE_PUSH = sig
val take : 'a Q.t -> 'a
val push : 'a Q.t -> 'a -> unit
val take_list: 'a Q.t -> int -> 'a list
val push_list : 'a Q.t -> 'a list -> unit
end
let cur = (module Q : TAKE_PUSH)
let naive =
let module Q = struct
let take = Q.take
let push = Q.push
let push_list q l = List.iter (push q) l
let rec take_list q n =
if n=0 then []
else
let x = take q in
x :: take_list q (n-1)
end in
(module Q : TAKE_PUSH)
(* n senders, n receivers *)
let bench_queue ~size ~senders ~receivers n =
let make (module TP : TAKE_PUSH) =
let l = CCList.(1 -- n) in
fun () ->
let q = Q.create size in
let res = CCLock.create 0 in
let expected_res = 2 * senders * Sequence.(1 -- n |> fold (+) 0) in
let a_senders = CCThread.Arr.spawn senders
(fun _ ->
TP.push_list q l;
TP.push_list q l
)
and a_receivers = CCThread.Arr.spawn receivers
(fun _ ->
let l1 = TP.take_list q n in
let l2 = TP.take_list q n in
let n = List.fold_left (+) 0 l1 + List.fold_left (+) 0 l2 in
CCLock.update res ((+) n);
()
)
in
CCThread.Arr.join a_senders;
CCThread.Arr.join a_receivers;
assert (expected_res = CCLock.get res);
()
in
B.throughputN 3 ~repeat
[ "cur", make cur, ()
; "naive", make naive, ()
]
let fib_pool_ ~size n =
let module P = CCPool.Make(struct let max_size = size end) in
let open P.Fut.Infix in
let rec fib n =
if n<=1 then P.Fut.return 1
else
let f1 = fib (n-1)
and f2 = fib (n-2) in
P.Fut.return (+) <*> f1 <*> f2
in
P.Fut.get (fib n)
let fib_manual n =
let rec fib n =
if n<= 1 then 1
else fib (n-1) + fib (n-2)
in
fib n
(* pool of size [size] *)
let bench_pool ~size n =
assert (fib_manual n = fib_pool_ ~size n);
B.throughputN 3 ~repeat
[ "sequential", fib_manual, n
; "pool", fib_pool_ ~size, n
]
let () = B.Tree.register (
let take_push = CCList.map
(fun (size,senders,receivers) ->
Printf.sprintf "queue.take/push (size=%d,senders=%d,receivers=%d)"
size senders receivers
@>>
app_ints (bench_queue ~size ~senders ~receivers)
[100; 1_000]
) [ 2, 3, 3
; 5, 3, 3
; 1, 5, 5
; 2, 10, 10
; 5, 10, 10
; 20, 10, 10
]
in
"thread" @>>>
( take_push @
[ "fib_size5" @>> app_ints (bench_pool ~size:5) [10; 15; 30; 35]
; "fib_size15" @>> app_ints (bench_pool ~size:15) [10; 15; 30; 35]
]
)
)
end
module Graph = struct
(* divisors graph *)
let div_children_ i =
(* divisors of [i] that are [>= j] *)
let rec aux j i yield =
if j < i
then (
if (i mod j = 0) then yield (i,j);
aux (j+1) i yield
)
in
aux 1 i
let div_graph_ = {CCGraph.
origin=fst;
dest=snd;
children=div_children_
}
module H = Hashtbl.Make(CCInt)
let dfs_raw n () =
let explored = H.create (n+10) in
let st = Stack.create() in
let res = ref 0 in
Stack.push n st;
while not (Stack.is_empty st) do
let i = Stack.pop st in
if not (H.mem explored i) then (
H.add explored i ();
incr res;
div_children_ i (fun (_,j) -> Stack.push j st);
)
done;
!res
let dfs_ n () =
let tbl = CCGraph.mk_table ~eq:CCInt.equal ~hash:CCInt.hash (n+10) in
CCGraph.Traverse.dfs ~tbl ~graph:div_graph_
(Sequence.return n)
|> Sequence.fold (fun acc _ -> acc+1) 0
let dfs_event n () =
let tbl = CCGraph.mk_table ~eq:CCInt.equal ~hash:CCInt.hash (n+10) in
CCGraph.Traverse.Event.dfs ~tbl ~graph:div_graph_
(Sequence.return n)
|> Sequence.fold
(fun acc -> function
| `Enter _ -> acc+1
| `Exit _
| `Edge _ -> acc)
0
let bench_dfs n =
assert (
let n1 = dfs_raw n () in
let n2 = dfs_ n () in
let n3 = dfs_event n () in
n1 = n2 &&
n2 = n3);
B.throughputN 2 ~repeat
[ "raw", dfs_raw n, ()
; "ccgraph", dfs_ n, ()
; "ccgraph_event", dfs_event n, ()
]
let () =
B.Tree.register ("graph" @>>>
[ "dfs" @>>
app_ints bench_dfs [100; 1000; 10_000; 50_000; 100_000; 500_000]
]
)
end
module Alloc = struct
module type ALLOC_ARR = sig
type 'a t
val name : string
val create : int -> 'a t
val make : 'a t -> int -> 'a -> 'a array
val free : 'a t -> 'a array -> unit
end
let dummy =
let module A = struct
type _ t = unit
let name = "dummy"
let create _ = ()
let make _ i x = Array.make i x
let free _ _ = ()
end in
(module A : ALLOC_ARR)
let alloc_cache ~buck_size =
let module A = struct
type 'a t = 'a CCAllocCache.Arr.t
let name = Printf.sprintf "alloc_cache(%d)" buck_size
let create n = CCAllocCache.Arr.create ~buck_size n
let make = CCAllocCache.Arr.make
let free = CCAllocCache.Arr.free
end in
(module A : ALLOC_ARR)
(* repeat [n] times:
- repeat [batch] times:
- allocate [batch] arrays of size from 1 to batch+1
- free those arrays
*)
let bench1 ~batch n =
let make (module C : ALLOC_ARR) () =
let c = C.create (batch*2) in
let tmp = Array.make (batch * batch) [||] in (* temporary storage *)
for _ = 1 to n do
for j = 0 to batch-1 do
for k = 0 to batch-1 do
tmp.(j*batch + k) <- C.make c (k+1) '_';
done;
done;
Array.iter (C.free c) tmp (* free the whole array *)
done
in
B.throughputN 3 ~repeat
[ "dummy", make dummy, ()
; "cache(5)", make (alloc_cache ~buck_size:5), ()
; "cache(20)", make (alloc_cache ~buck_size:20), ()
; "cache(50)", make (alloc_cache ~buck_size:50), ()
]
let () = B.Tree.register (
"alloc" @>>>
[ "bench1(batch=5)" @>>
app_ints (bench1 ~batch:5) [100; 1_000]
; "bench1(batch=15)" @>>
app_ints (bench1 ~batch:15) [100; 1_000]
; "bench1(batch=50)" @>>
app_ints (bench1 ~batch:50) [100; 1_000]
]
)
end
let () =
try B.Tree.run_global ()
with Arg.Help msg -> print_endline msg